Characterization of an Immune-Enhancing Polysaccharide Fraction Isolated from Heat-Processed Ginseng Derived from Panax ginseng C.A. Meyer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antibodies and Reagents
2.2. Plant Material and Preparation of SGP
2.3. Chemical Characteristic Analysis of SGP
2.4. Cell Culture
2.5. Cell Cytotoxicity Assay
2.6. Determination of Nitric Oxide (NO) Production
2.7. Determination of Cytokines TNF-α and IL-6
2.8. Real-Time PCR (RT-qPCR)
2.9. Immunoblotting
2.10. Statistical Analysis
3. Results
3.1. Extraction and Chemical Characteristics of SGP
3.2. Effect of SGP on RAW264.7 Macrophage Cell Proliferation
3.3. SGP Increased Immune-Enhancing Activity through NO and iNOS Level in RAW264.7 Macrophages
3.4. SGP Increased mRNA Expression and Cytokine Secretion of IL-6 and TNF-α in RAW264.7 Macrophages
3.5. SGP Increased Immune-Enhancing Activity through Phosphorylation of MAPKs and NF-κB Signaling Pathways in RAW264.7 Macrophages
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ogasawara, N.; Matsushima, M.; Kawamura, N.; Atsumi, K.; Yamaguchi, T.; Ochi, H.; Kusatsugu, Y.; Oyabu, S.; Hashimoto, N.; Hasegawa, Y. Modulation of immunological activity on macrophages induced by diazinon. Toxicology 2017, 379, 22–30. [Google Scholar] [CrossRef]
- Varol, C.; Mildner, A.; Jung, S. Macrophages: Development and tissue specialization. Annu. Rev. Immunol. 2015, 33, 643–675. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 2003, 3, 23–35. [Google Scholar] [CrossRef]
- Merecz-Sadowska, A.; Sitarek, P.; Śliwiński, T.; Zajdel, R. Anti-Inflammatory Activity of Extracts and Pure Compounds Derived from Plants via Modulation of Signaling Pathways, Especially PI3K/AKT in Macrophages. Int. J. Mol. Sci. 2020, 21, 9605. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Li, W.; Chen, S.-Y.; Zhang, S.; Chen, Y.-T.; Hayashida, Y.; Zhu, Y.-T.; Tseng, S.C. Suppression of activation and induction of apoptosis in RAW264. 7 cells by amniotic membrane extract. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4468–4475. [Google Scholar]
- Lasunskaia, E.B.; Campos, M.N.; de Andrade, M.R.; DaMatta, R.A.; Kipnis, T.L.; Einicker-Lamas, M.; Da Silva, W.D. Mycobacteria directly induce cytoskeletal rearrangements for macrophage spreading and polarization through TLR2-dependent PI3K signaling. J. Leukoc. Biol. 2006, 80, 1480–1490. [Google Scholar] [CrossRef]
- Hirayama, D.; Iida, T.; Nakase, H. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis. Int. J. Mol. Sci. 2018, 19, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schenten, D.; Medzhitov, R. The control of adaptive immune responses by the innate immune system. Adv. Immunol. 2011, 109, 87–124. [Google Scholar] [PubMed]
- Watanabe, M.; Toyomura, T.; Wake, H.; Liu, K.; Teshigawara, K.; Takahashi, H.; Nishibori, M.; Mori, S. Differential contribution of possible pattern-recognition receptors to advanced glycation end product–induced cellular responses in macrophage-like RAW264. 7 cells. Biotechnol. Appl. Biochem. 2020, 67, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.-H.; Ma, Z.-X.; Zhu, J.; Yu, X.-H.; Weng, D.-P. Characterization of polysaccharide from Astragalus radix as the macrophage stimulator. Cell. Immunol. 2011, 271, 329–334. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Wang, H.; Wang, J.; Sun-Waterhouse, D.; Waterhouse, G.I.N.; Ma, C.; Kang, W. An immunomodulatory polysaccharide from blackberry seeds and its action on RAW 264.7 cells via activation of NF-kB/MAPK pathways. Food Agric. Immunol. 2020, 31, 575–586. [Google Scholar] [CrossRef]
- Craig, R.; Larkin, A.; Mingo, A.M.; Thuerauf, D.J.; Andrews, C.; McDonough, P.M.; Glembotski, C.C. p38 MAPK and NF-kB collaborate to induce interleukin-6 gene expression and release: Evidence for a cytoprotective autocrine signaling pathway in a cardiac myocyte model system. J. Biol. Chem. 2000, 275, 23814–23824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keum, Y.-S.; Park, K.-K.; Lee, J.-M.; Chun, K.-S.; Park, J.H.; Lee, S.K.; Kwon, H.; Surh, Y.-J. Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng. Cancer Lett. 2000, 150, 41–48. [Google Scholar] [CrossRef]
- Baek, N.-I.; Kim, D.S.; Lee, Y.H.; Park, J.D.; Lee, C.B.; Kim, S.I. Ginsenoside Rh4, a genuine dammarane glycoside from Korean red ginseng. Planta Med. 1996, 62, 86–87. [Google Scholar] [CrossRef]
- Namgung, E.; Kim, J.; Jeong, H.; Hong, G.; Kim, M.; Kim, R.Y.; Kim, S.; Lyoo, I.K. Effects of Korean red ginseng on human gray matter volume and cognitive function: A voxel-based morphometry study. Hum. Psychopharmacol. Clin. Exp. 2021, 36, e2767. [Google Scholar] [CrossRef]
- Choi, K.T. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer. Acta Pharmacol. Sin. 2008, 29, 1109–1118. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.S.; Yamabe, N.; Kim, H.Y.; Park, J.H.; Yokozawa, T. Therapeutic potential of 20 (S)-ginsenoside Rg3 against streptozotocin-induced diabetic renal damage in rats. Eur. J. Pharmacol. 2008, 591, 266–272. [Google Scholar] [CrossRef]
- Sun, B.-S.; Gu, L.-J.; Fang, Z.-M.; Wang, C.-y.; Wang, Z.; Lee, M.-R.; Li, Z.; Li, J.-J.; Sung, C.-K. Simultaneous quantification of 19 ginsenosides in black ginseng developed from Panax ginseng by HPLC–ELSD. J. Pharm. Biomed. Anal. 2009, 50, 15–22. [Google Scholar] [CrossRef]
- Suh, H.-J.; Yang, H.-S.; Ra, K.-S.; Noh, D.-O.; Kwon, K.-H.; Hwang, J.-H.; Yu, K.-W. Peyer’s patch-mediated intestinal immune system modulating activity of pectic-type polysaccharide from peel of Citrus unshiu. Food Chem. 2013, 138, 1079–1086. [Google Scholar] [CrossRef]
- Rahimi, V.B.; Ajam, F.; Rakhshandeh, H.; Askari, V.R. A pharmacological review on Portulaca oleracea L.: Focusing on anti-inflammatory, anti-oxidant, immuno-modulatory and antitumor activities. J. Pharmacopunct. 2019, 22, 7. [Google Scholar]
- Park, D.H.; Han, B.; Shin, M.-S.; Hwang, G.S. Enhanced Intestinal Immune Response in Mice after Oral Administration of Korea Red Ginseng-Derived Polysaccharide. Polymers 2020, 12, 2186. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.-S.; Song, J.H.; Choi, P.; Lee, J.H.; Kim, S.-Y.; Shin, K.-S.; Ham, J.; Kang, K.S. Stimulation of innate immune function by Panax ginseng after heat processing. J. Agric. Food Chem. 2018, 66, 4652–4659. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wu, D.; Ning, X.; Yang, G.; Lin, Z.; Tian, M.; Zhou, Y. α-Amylase-assisted extraction of polysaccharides from Panax ginseng. Int. J. Biol. Macromol. 2015, 75, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Akhter, K.F.; Mumin, M.A.; Lui, E.M.; Charpentier, P.A. Fabrication of fluorescent labeled ginseng polysaccharide nanoparticles for bioimaging and their immunomodulatory activity on macrophage cell lines. Int. J. Biol. Macromol. 2018, 109, 254–262. [Google Scholar] [CrossRef]
- Masuko, T.; Minami, A.; Iwasaki, N.; Majima, T.; Nishimura, S.-I.; Lee, Y.C. Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal. Biochem. 2005, 339, 69–72. [Google Scholar] [PubMed]
- Van den Hoogen, B.M.; van Weeren, P.R.; Lopes-Cardozo, M.; van Golde, L.M.; Barneveld, A.; van de Lest, C.H. A microtiter plate assay for the determination of uronic acids. Anal. Biochem. 1998, 257, 107–111. [Google Scholar] [PubMed]
- Ai, Y.; Yu, Z.; Chen, Y.; Zhu, X.; Ai, Z.; Liu, S.; Ni, D. Rapid determination of the monosaccharide composition and contents in tea polysaccharides from Yingshuang green tea by pre-column derivatization HPLC. J. Chem. 2016, 2016, 6065813. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Zhang, X.; Broderick, M.; Fein, H. Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors 2003, 3, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Bai, Y.; Zhang, Z.; Cai, W.; Del Rio Flores, A. The preparation and structure analysis methods of natural polysaccharides of plants and fungi: A review of recent development. Molecules 2019, 24, 3122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.-J.; Kim, M.-H.; Byon, Y.-Y.; Park, J.W.; Jee, Y.; Joo, H.-G. Radioprotective effects of an acidic polysaccharide of Panax ginseng on bone marrow cells. J. Vet. Sci. 2007, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Kang, K.S.; Kim, S.I. Study on antitumor and immunomodulating activities of polysaccharide fractions from Panax ginseng: Comparison of effects of neutral and acidic polysaccharide fraction. Arch. Pharmacal Res. 1990, 13, 330–337. [Google Scholar] [CrossRef]
- Raman, M.; Chen, W.; Cobb, M. Differential regulation and properties of MAPKs. Oncogene 2007, 26, 3100–3112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viatour, P.; Merville, M.-P.; Bours, V.; Chariot, A. Phosphorylation of NF-kB and IκB proteins: Implications in cancer and inflammation. Trends Biochem. Sci. 2005, 30, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.-S.; Lee, H.; Hong, H.-D.; Shin, K.-S. Characterization of immunostimulatory pectic polysaccharide isolated from leaves of Diospyros kaki Thumb. (Persimmon). J. Funct. Foods 2016, 26, 319–329. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.-W.; Yu, K.-W.; Suh, H.-J. Polysaccharides fractionated from enzyme digests of Korean red ginseng water extracts enhance the immunostimulatory activity. Int. J. Biol. Macromol. 2019, 121, 913–920. [Google Scholar] [CrossRef]
- Schepketkin, I.A.; Quinn, M.T. Macrophage immunomoduation and therapeutic potential. Int. Immunopharmacol. 2006, 6, 317–333. [Google Scholar] [CrossRef]
Chemical Characteristic (%) | SGP |
---|---|
Carbohydrate | 84.3 ± 2.1 |
Uronic acid | 5.5 ± 0.6 |
Protein | 1.5 ± 0.02 |
Component of Monosaccharides (%) | |
Arabinose | 3.2 |
Fucose | 4.4 |
Galactose | 2.8 |
Galacturonic acid | 1.8 |
Glucose | 67.3 |
Glucuronic acid | TL |
Mannose | TL |
Rhamnose | TL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.J.; Shin, M.-S.; Kim, M.; Baek, S.-H.; Kang, K.S. Characterization of an Immune-Enhancing Polysaccharide Fraction Isolated from Heat-Processed Ginseng Derived from Panax ginseng C.A. Meyer. Appl. Sci. 2021, 11, 10835. https://doi.org/10.3390/app112210835
Kim SJ, Shin M-S, Kim M, Baek S-H, Kang KS. Characterization of an Immune-Enhancing Polysaccharide Fraction Isolated from Heat-Processed Ginseng Derived from Panax ginseng C.A. Meyer. Applied Sciences. 2021; 11(22):10835. https://doi.org/10.3390/app112210835
Chicago/Turabian StyleKim, Sung Jin, Myoung-Sook Shin, Minyeong Kim, Seung-Hoon Baek, and Ki Sung Kang. 2021. "Characterization of an Immune-Enhancing Polysaccharide Fraction Isolated from Heat-Processed Ginseng Derived from Panax ginseng C.A. Meyer" Applied Sciences 11, no. 22: 10835. https://doi.org/10.3390/app112210835
APA StyleKim, S. J., Shin, M. -S., Kim, M., Baek, S. -H., & Kang, K. S. (2021). Characterization of an Immune-Enhancing Polysaccharide Fraction Isolated from Heat-Processed Ginseng Derived from Panax ginseng C.A. Meyer. Applied Sciences, 11(22), 10835. https://doi.org/10.3390/app112210835