Evaluation of the Compatibility of Modified Encapsulated Sodium Silicate for Self-Healing of Cementitious Composites
Abstract
:1. Introduction
2. Research Significance
3. Materials
3.1. Cementitious Binders and Chemical Healing Agent Materials
3.2. Characterization and Preparation of Capsules
3.3. Sample Preparation
4. Experimental Procedures
4.1. Capsules Survival Capability
4.2. Bonding Strength of Capsule
4.3. Crack Formation
4.4. Compressive Strength Recovery
4.5. Microstructure Study
5. Results and Discussion
5.1. Capsules Survival Capability
5.2. Capsule’s Bonding Strength
5.3. Compressive Strength Recovery
5.4. Microstructural Investigation
6. Conclusions
6.1. The Compatibility between Capsule and Cement-Matrix
6.2. The Effect on the Self-Healing Performance
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, J.; Shi, X. Developing an abiotic capsule-based self-healing system for cementitious materials: The state of knowledge. Constr. Build. Mater. 2017, 156, 1096–1113. [Google Scholar] [CrossRef]
- Talaiekhozan, A.; Keyvanfar, A.; Shafaghat, A.; Andalib, R.; Abd Majid, M.Z.; Fulazzaky, M.A.; Mohamad, Z.R.; Lee, C.T.; Hussin, M.W.; Hamzah, N.; et al. A Review of Self-healing Concrete Research Development. J. Environ. Treat. Tech. 2014, 2, 1–11. [Google Scholar]
- Van Tittelboom, K.; De Belie, N.; Lehmann, F.; Grosse, C.U. Acoustic emission analysis for the quantification of autonomous crack healing in concrete. Constr. Build. Mater. 2012, 28, 333–341. [Google Scholar] [CrossRef]
- Yang, Y.; Lepech, M.D.; Yang, E.-H.; Li, V.C. Autogenous healing of engineered cementitious composites under wet–dry cycles. Cem. Concr. Res. 2009, 39, 382–390. [Google Scholar] [CrossRef]
- Şahmaran, M.; Keskin, S.B.; Ozerkan, G.; Yaman, I.O. Self-healing of mechanically-loaded self consolidating concretes with high volumes of fly ash. Cem. Concr. Compos. 2008, 30, 872–879. [Google Scholar] [CrossRef]
- Sahmaran, M.; Yildirim, G.; Erdem, T.K. Self-healing capability of cementitious composites incorporating different supplementary cementitious materials. Cem. Concr. Compos. 2013, 35, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, T.S.; Al-Tabbaa, A. Self-healing concrete and cementitious materials. In Advanced Functional Materials; Tasaltin, N., Nnmachi, P.S., Saud, S., Eds.; IntechOpen: London, UK, 2020. [Google Scholar]
- De Rooij, M.; Van Tittelboom, K.; De Belie, N.; Schlangen, E. Self-Healing Phenomena in Cement-Based Materials: State-of-the-Art Report of RILEM Technical Committee 221-SHC; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Granger, S.; Loukili, A.; Pijaudier-Cabot, G.; Chanvillard, G. Experimental characterization of the self-healing of cracks in an ultra high performance cementitious material: Mechanical tests and acoustic emission analysis. Cem. Concr. Res. 2007, 37, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Brough, A.R.; Atkinson, A. Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure. Cem. Concr. Res. 2002, 32, 865–879. [Google Scholar] [CrossRef]
- Chang, J.J. A study on the setting characteristics of sodium silicate-activated slag pastes. Cem. Concr. Res. 2003, 33, 1005–1011. [Google Scholar] [CrossRef]
- Huang, H.; Ye, G. Application of sodium silicate solution as self-healing agent in cementitious materials. In Proceedings of the International RILEM Conference on Advances in Construction Materials through Science and Engineering, Hong Kong, China, 5–7 September 2011; pp. 530–536. [Google Scholar]
- Gilford, J., III; Hassan, M.M.; Rupnow, T.; Barbato, M.; Okeil, A.; Asadi, S. Dicyclopentadiene and sodium silicate microencapsulation for self-healing of concrete. J. Mater. Civ. Eng. 2014, 26, 886–896. [Google Scholar] [CrossRef]
- Alghamri, R.; Kanellopoulos, A.; Al-Tabbaa, A. Impregnation and encapsulation of lightweight aggregates for self-healing concrete. Constr. Build. Mater. 2016, 124, 910–921. [Google Scholar] [CrossRef]
- Restuccia, L.; Reggio, A.; Ferro, G.A.; Tulliani, J.-M. New self-healing techniques for cement-based materials. Procedia Struct. Integr. 2017, 3, 253–260. [Google Scholar] [CrossRef]
- Dry, C. Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices. Smart Mater. Struct. 1994, 3, 118–123. [Google Scholar] [CrossRef]
- Van Tittelboom, K.; Tsangouri, E.; Van Hemelrijck, D.; De Belie, N. The efficiency of self-healing concrete using alternative manufacturing procedures and more realistic crack patterns. Cem. Concr. Compos. 2015, 57, 142–152. [Google Scholar] [CrossRef]
- Kanellopoulos, A.; Qureshi, T.S.; Al-Tabbaa, A. Glass encapsulated minerals for self-healing in cement based composites. Constr. Build. Mater. 2015, 98, 780–791. [Google Scholar] [CrossRef]
- Hilloulin, B.; Van Tittelboom, K.; Gruyaert, E.; De Belie, N.; Loukili, A. Design of polymeric capsules for self-healing concrete. Cem. Concr. Compos. 2015, 55, 298–307. [Google Scholar] [CrossRef] [Green Version]
- Escobar, M.M.; Vago, S.; Vázquez, A. Self-healing mortars based on hollow glass tubes and epoxy–amine systems. Compos. Part. B Eng. 2013, 55, 203–207. [Google Scholar] [CrossRef]
- Qureshi, T.S.; Kanellopoulos, A.; Al-Tabbaa, A. Encapsulation of expansive powder minerals within a concentric glass capsule system for self-healing concrete. Constr. Build. Mater. 2016, 121, 629–643. [Google Scholar] [CrossRef]
- Dong, B.; Fang, G.; Ding, W.; Liu, Y.; Zhang, J.; Han, N.; Xing, F. Self-Healing Features in Cementitious Material with Urea-Formaldehyde/epoxy Microcapsules. Constr. Build. Mater. 2016, 106, 608–617. [Google Scholar] [CrossRef]
- White, S.R.; Sottos, N.R.; Geubelle, P.H.; Moore, J.S.; Kessler, M.R.; Sriram, S.R.; Brown, E.N.; Viswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794–817. [Google Scholar] [CrossRef]
- Zhang, M.; Han, N.; Xing, F.; Wang, X.; Schlangen, E. Evaluation of a Microcapsule based self-healing system for cementitious materials. In Proceedings of the 4th International Conference on Self-Healing Materials, Ghent, Belgium, 16–20 June 2013. [Google Scholar]
- Mostavi, E.; Asadi, S.; Hassan, M.M.; Alansari, M. Evaluation of Self-Healing Mechanisms in Concrete with Double-Walled Sodium Silicate Microcapsules. J. Mater. Civil. Eng. 2015, 27, 4015035. [Google Scholar] [CrossRef]
- Nishiwaki, T. Fundamental Sudy on Development of Intelligent Concrete with Self-Healing Capability. Master’s Thesis, Department of Architecture and Building Science, Graduate School of Engineering, Tohoku University, Tohoku, Japan, 1997. [Google Scholar]
- Perez, G.; Gaitero, J.J.; Erkizia, E.; Jimenez, I.; Guerrero, A. Characterisation of cement pastes with innovative self-healing system based in epoxy-amine adhesive. Cem. Concr. Compos. 2015, 60, 55–64. [Google Scholar] [CrossRef]
- Yang, Z.; Hollar, J.; He, X.; Shi, X. A Self-Healing Cementitious Composite Using Oil Core/silica Gel Shell Microcapsules. Cem. Concr. Compos. 2011, 33, 506–512. [Google Scholar] [CrossRef]
- Pelletier, M.; Brown, R.; Shukla, A.; Bose, A. Self-Healing Concrete with a Microencapsulated Healing Agent. 2011. Available online: https://www.semanticscholar.org/paper/Self-healing-concrete-with-a-microencapsulated-Pelletier-Brown/e48b937bde7c53ce059d464822ebc837a31647dc (accessed on 5 January 2021).
- Wang, J.Y.; Soens, H.; Verstraete, W.; De Belie, N. Self-healing concrete by use of microencapsulated bacterial spores. Cem. Concr. Res. 2014, 56, 139–152. [Google Scholar] [CrossRef]
- Thao, T.D.P.; Johnson, T.J.S.; Tong, Q.S.; Dai, P.S. Implementation of self-healing in concrete—Proof of concept. IES J. Part. A Civil. Struct. Eng. 2009, 2, 116–125. [Google Scholar] [CrossRef]
- Joseph, C.; Jefferson, A.D.; Canoni, M.B. Issues relating to the autonomic healing of cementitious materials. In Proceedings of the 1st International Conference on Self Healing Materials, Noordwijk aan Zee, The Netherlands, 18–20 April 2007. [Google Scholar]
- Van Tittelboom, K.; De Belie, N. Self-healing concrete: Suitability of different healing agents. Int. J. 3R’s 2010, 1, 12–21. [Google Scholar]
- Lv, L.Y.; Zhang, H.; Schlangen, E.; Yang, Z.; Xing, F. Experimental and numerical study of crack behaviour for capsule-based self-healing cementitious materials. Constr. Build. Mater. 2017, 156, 219–229. [Google Scholar] [CrossRef]
- Wu, M.; Johannesson, B.; Geiker, M. A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Constr. Build. Mater. 2012, 28, 571–583. [Google Scholar] [CrossRef]
- Van Tittelboom, K. Self-Healing Concrete through Incorporation of Encapsulated Bacteria- or Polymer-Based Healing Agents. Ph.D. Thesis, Ghent University, Ghent, Belgium, 2012. [Google Scholar]
- Van Tittelboom, K.; De Belie, N. Self-healing in cementitious materials—A review. Materials 2013, 6, 2182–2217. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Jiang, Z.; Yang, Z.; Zhao, N.; Yuan, W. Self-healing efficiency of cementitious materials containing microcapsules filled with healing adhesive: Mechanical restoration and healing process monitored by water absorption. PLoS ONE 2013, 8, e81616. [Google Scholar] [CrossRef]
- The British Standards Institution. Cement. Composition, Specifications and Conformity Criteria for Common Cements; BS EN 197-1:2011; BSI Stardards Limited: London, UK, 2019. [Google Scholar]
- ASTM International. Standard Test Method for Tensile Strength of Hydraulic Cement Mortars; ASTM C190. 2005; ASTM International: West Conshohocken, PA, USA, 2020. [Google Scholar]
- Behnood, A.; Van Tittelboom, K.; De Belie, N. Methods for measuring pH in concrete: A review. Constr. Build. Mater. 2015, 105, 176–188. [Google Scholar] [CrossRef]
- Gruyaert, E.; Van Tittelboom, K.; Sucaet, J.; Anrijs, J.; Van Vlierberghe, S.; Dubruel, P.; De Geest, B.G.; Remon, J.P.; De Belie, N. Capsules with evolving brittleness to resist the preparation of self-healing concrete. Mater. Construcción 2016, 66, e092. [Google Scholar]
- Saleh Salem Beshr, B.; Abdul Mohaimen, I.M.; Noor Azline, M.N.; Nor Azizi, S.; Nabilah, A.B.; Farah Nora Aznieta, A.A. Feasibility assessment on self-healing ability of cementitious composites with MgO. J. Build. Eng. 2020, 41, 101914. [Google Scholar]
- The British Standards Institution. Testing Hardened Concrete. Compressive Strength of Test Specimens; BS EN 12390-3. 2009; BSI Standards Limited: London, UK, 2011. [Google Scholar]
- Grubb, J.A.; Limaye, H.S.; Kakade, A.M. Testing pH of concrete: Need for a standard procedure. Am. Concr. Inst. 2007, 29, 78–83. [Google Scholar]
- Silva, D.A.; Roman, H.R.; Gleize, P.J.P. Evidences of chemical interaction between EVA and hydrating Portland cement. Cem. Concr. Res. 2002, 32, 1383–1390. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Glasser, F. Alkali sorption by C-S-H and C-A-S-H gels. Cem. Concr. Res. 2002, 32, 1101–1111. [Google Scholar] [CrossRef]
- Yip, C.K.; Lukey, G.C.; Van Deventer, J.S.J. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 2005, 35, 1688–1697. [Google Scholar] [CrossRef]
- García-Lodeiro, I.; Fernández-Jiménez, A.; Blanco, M.T.; Palomo, A. FTIR study of the sol–gel synthesis of cementitious gels: C–S–H and N–A–S–H. J. Sol.-Gel Sci. Technol. 2008, 45, 63–72. [Google Scholar] [CrossRef]
- Hu, Z.-X.; Hu, X.-M.; Cheng, W.-M.; Zhao, Y.-Y.; Wu, M.-Y. Performance optimization of one-component polyurethane healing agent for self-healing concrete. Constr. Build. Mater. 2018, 179, 151–159. [Google Scholar] [CrossRef]
- Kessler, M.; Sottos, N.; White, S. Self-healing structural composite materials. Compos. Part A Appl. Sci. Manuf. 2003, 34, 743–753. [Google Scholar] [CrossRef]
- Brown, E.N.; White, S.R.; Sottos, N.R. Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite—Part II: In situ self-healing. Compos. Sci. Technol. 2005, 65, 2474–2480. [Google Scholar] [CrossRef] [Green Version]
- Xing, F.; Ni, Z.; Han, N.X.; Dong, B.Q.; Du, X.X.; Huang, Z.; Zhang, M. Self-healing mechanism of a novel cementitious composite using microcapsules. In Proceedings of the International Conference on Durability of Concrete Structures, Zhejiang University, Hangzhou, China, 26–27 November 2008. [Google Scholar]
- Wu, Z.; Shi, C.; Khayat, K.H. Influence of silica fume content on microstructure development and bond to steel fiber in ultra-high strength cement-based materials. Cem. Concr. Compos. 2016, 71, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Depaa, R.A.B.; Kala, T.F. Experimental investigation of self-healing behavior of concrete using silica fume and GGBFS as mineral admixtures. Indian J. Sci. Technol. 2015, 8, 1–6. [Google Scholar] [CrossRef]
- Giannaros, P.; Kanellopoulos, A.; Al-Tabbaa, A. Sealing of cracks in cement using microencapsulated sodium silicate. Smart Mater. Struct. 2016, 25, 084005. [Google Scholar] [CrossRef]
- Huang, H.; Ye, G. Numerical Studies of the Effects of Water Capsules on Self-Healing Efficiency and Mechanical Properties in Cementitious Materials. Adv. Mater. Sci. Eng. 2016, 2016, 8271214. [Google Scholar] [CrossRef] [Green Version]
Carrier Material | Shape | Dimensions | Findings | References |
---|---|---|---|---|
Glass | Cylindrical | Ø3 mm × 60 mm Ø3 mm × 400 mm |
| [16,17,18] |
Glass fibers | - | |||
Soda glass | Ø6.15 mm × 50 mm | |||
Ceramics | Ø3 mm × 60 mm Ø3 mm × 400 mm | |||
Polystyrene (PS) Poly(lactic acid) Poly (methyl methacrylate) | Ø1.1–Ø3.8 mm |
| [19] | |
Hollow glass | Ø1.2 mm × 75 mm Ø2 mm × 75 mm |
| [20] | |
Concentric glass | Ø11.4 mm (outer) × 50 mm Ø6.15 mm (inner) × 50 mm |
| [21] | |
Urea-Formaldehyde (UF) | Spherical | Ø100–250 µm Ø200 µm Ø82–380 µm Ø200–250 µm |
| [22,23,24,25] |
Urea Formaldehyde formalin (UFF) | - |
| [26] | |
Silica | Ø5–180 μm Ø4.15 μm |
| [27,28] | |
Polyurethane | Ø200–250 µm Ø40–800 µm |
| [25,29] | |
Melamine | Ø2–5 µm |
| [30] | |
Pharmaceutical-Epoxy & Glass | Cylindrical sphere & spherical | Ø5.57 mm × 15.9 mm Ø8 mm |
| [15] |
Specimen | Evaluation | Test Method | Material Type |
---|---|---|---|
Investigation I: Capsule Surface Treatment and Compatibility | |||
1. Capsule with roughen surface 2. Capsule with weak lines surface | Capsule Survivability | pH evaluation | Fresh concrete |
Fourier transform infrared spectroscopy (FTIR) | |||
Physical observation | |||
Bonding strength of capsule | Bonding strength | Mortar | |
Investigation II: Effect of the Capsule on the Healing Ability | |||
100%OPC 1 95%OPC + 5%SF 1 | Strength recovery | Compressive strength test | Cement paste |
Scanning electron microscope (SEM) and energy dispersive x-ray (EDX) |
Physical Properties | ||
---|---|---|
OPC | Silica Fume | |
Color | Grey | Dark Grey |
Specific gravity | 3.15 | 2.22 |
Specific surface area, (m2/g) | 1.65 | 20.55 |
Form | Powder | Ultra-Fine Powder |
Chemical Compositions (% by Mass) | ||
OPC | Silica Fume | |
SiO2 | 19.5 | 95.3 |
Al2O3 | 5.3 | 0.7 |
Fe2O3 | 2.3 | 0.3 |
Na2O | 0.2 | 0.2 |
K2O | 1.0 | 0.8 |
CaO | 61.8 | 0.3 |
MgO | 2.3 | 0.4 |
SO3 | 3.8 | 3.2 |
Capsule Surface Texture | Compressive Strength of Capsule (N/mm2) | |
---|---|---|
Vertical Position | Horizontal Position | |
Smooth | 4.1 | 2.4 |
Roughen | 3.5 | 2.2 |
Weak lines | 2.3 | 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imad Mohammed, A.; Awadh Ba Rahman, A.; Mohd Nasir, N.A.; Bakar, N.A.; Safiee, N.A. Evaluation of the Compatibility of Modified Encapsulated Sodium Silicate for Self-Healing of Cementitious Composites. Appl. Sci. 2021, 11, 10847. https://doi.org/10.3390/app112210847
Imad Mohammed A, Awadh Ba Rahman A, Mohd Nasir NA, Bakar NA, Safiee NA. Evaluation of the Compatibility of Modified Encapsulated Sodium Silicate for Self-Healing of Cementitious Composites. Applied Sciences. 2021; 11(22):10847. https://doi.org/10.3390/app112210847
Chicago/Turabian StyleImad Mohammed, Abdulmohaimen, Ahmed Awadh Ba Rahman, Noor Azline Mohd Nasir, Nabilah Abu Bakar, and Nor Azizi Safiee. 2021. "Evaluation of the Compatibility of Modified Encapsulated Sodium Silicate for Self-Healing of Cementitious Composites" Applied Sciences 11, no. 22: 10847. https://doi.org/10.3390/app112210847
APA StyleImad Mohammed, A., Awadh Ba Rahman, A., Mohd Nasir, N. A., Bakar, N. A., & Safiee, N. A. (2021). Evaluation of the Compatibility of Modified Encapsulated Sodium Silicate for Self-Healing of Cementitious Composites. Applied Sciences, 11(22), 10847. https://doi.org/10.3390/app112210847