Line Scan Spatial Speckle Contrast Imaging and Its Application in Blood Flow Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Theory
2.3. Data Processing
2.4. Flow Phantom
2.5. Sample Preparation
3. Results and Discussion
3.1. Validation of Line Scan Laser Speckle Contrast Imaging
3.2. Choose the Appropriate Integration Time for Blood Flow Imaging of Chick Embryo
3.3. Comparison of LS-TSCI and LS-SSCI
3.4. Imaging Blood Flow Changes during Vascular Clipping Using LS-SSCI
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fercher, A.; Briers, J. Flow visualization by means of single-exposure speckle photography. Opt. Commun. 1981, 37, 326–330. [Google Scholar] [CrossRef]
- Briers, J.D.; Fercher, A.F. Retinal blood-flow visualization by means of laser speckle photography. Investig. Ophthalmol. Vis. Sci. 1982, 22, 255–259. [Google Scholar]
- Tamaki, Y.; Araie, M.; Kawamoto, E.; Eguchi, S.; Fujii, H. Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon. Investig. Ophthalmol. Vis. Sci. 1994, 35, 3825–3834. [Google Scholar]
- Cheng, H.; Yan, Y.; Duong, T.Q. Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging. Opt. Express 2008, 16, 10214–10219. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-C.; Ringold, T.L.; Nelson, J.S.; Choi, B. Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks. Lasers Surg. Med. 2008, 40, 167–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, B.; Kang, N.M.; Nelson, J. Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model. Microvasc. Res. 2004, 68, 143–146. [Google Scholar] [CrossRef] [Green Version]
- Roustit, M.; Millet, C.; Blaise, S.; Dufournet, B.; Cracowski, J. Excellent reproducibility of laser speckle contrast imaging to assess skin microvascular reactivity. Microvasc. Res. 2010, 80, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Mahé, G.; Humeau-Heurtier, A.; Durand, S.; Leftheriotis, G.; Abraham, P. Assessment of skin microvascular function and dysfunction with laser speckle contrast imaging. Circ. Cardiovasc. Imaging 2012, 5, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Mirdell, R.; Farnebo, S.; Sjöberg, F.; Tesselaar, E. Accuracy of laser speckle contrast imaging in the assessment of pediatric scald wounds. Burns 2018, 44, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Dunn, A.K.; Bolay, H.; Moskowitz, M.A.; Boas, D.A. Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle. Br. J. Pharmacol. 2001, 21, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Bolay, H.; Reuter, U.; Dunn, A.K.; Huang, Z.; Boas, D.A.; Moskowitz, M.A. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat. Med. 2002, 8, 136–142. [Google Scholar] [CrossRef]
- Li, P.; Ni, S.; Zhang, L.; Zeng, S.; Luo, Q. Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging. Opt. Lett. 2006, 31, 1824–1826. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.K.; Dunn, A.K.; Jones, P.B.; A Boas, D.; A Moskowitz, M.; Ayata, C. Vasoconstrictive neurovascular coupling during focal ischemic depolarizations. Br. J. Pharmacol. 2005, 26, 1018–1030. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, P.; Völker, A.C.; Wyss, M.T.; Haiss, F.; Calcinaghi, N.; Zunzunegui, C.; Buck, A.; Scheffold, F.; Weber, B. Dynamic laser speckle imaging of cerebral blood flow. Opt. Express 2009, 17, 13904–13917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunn, A.K. Laser speckle contrast imaging of cerebral blood flow. Ann. Biomed. Eng. 2011, 40, 367–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Wen, D.; Huang, S.; Gui, S.; Zhang, Z.; Lu, J.; Li, P. Laser speckle contrast imaging of blood flow in the deep brain using microendoscopy. Opt. Lett. 2018, 43, 5627–5630. [Google Scholar] [CrossRef]
- Boas, D.A.; Dunn, A.K. Laser speckle contrast imaging in biomedical optics. J. Biomed. Opt. 2010, 15, 011109. [Google Scholar] [CrossRef] [Green Version]
- Senarathna, J.; Rege, A.; Li, N.; Thakor, N.V. Laser speckle contrast imaging: Theory, instrumentation and applications. IEEE Rev. Biomed. Eng. 2013, 6, 99–110. [Google Scholar] [CrossRef]
- Briers, D.; Duncan, D.D.; Hirst, E.; Kirkpatrick, S.J.; Larsson, M.; Steenbergen, W.; Stromberg, T.; Thompson, O.B. Laser speckle contrast imaging: Theoretical and practical limitations. J. Biomed. Opt. 2013, 18, 066018. [Google Scholar] [CrossRef] [Green Version]
- Vaz, P.G.; Humeau-Heurtier, A.; Figueiras, E.; Correia, C.; Cardoso, J.M. Laser speckle imaging to monitor microvascular blood flow: A review. IEEE Rev. Biomed. Eng. 2016, 9, 106–120. [Google Scholar] [CrossRef] [Green Version]
- Heeman, W.; Steenbergen, W.; Van Dam, G.M.; Boerma, E.C. Clinical applications of laser speckle contrast imaging: A review. J. Biomed. Opt. 2019, 24, 080901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draijer, M.; Hondebrink, E.; van Leeuwen, T.; Steenbergen, W. Review of laser speckle contrast techniques for visualizing tissue perfusion. Lasers Med. Sci. 2008, 24, 639–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez-San-Juan, J.C.; Nelson, J.S.; Choi, B. Comparison of lorentzian and guassian-based approaches for laser speckle imaging of blood flow dynamics. In Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X; Tuchin, V.V., Izatt, J.A., Fujimoto, J.G., Eds.; SPIE: Bellingham, WA, USA, 2006; Volume 6079, pp. 380–383. [Google Scholar]
- Duncan, D.D.; Kirkpatrick, S.J.; Gladish, J.C. What is the proper statistical model for laser speckle flowmetry? In Complex Dynmics and Fluctuations in Biomedical Photonics; SPIE: Bellingham, WA, USA, 2008; Volume 6855, p. 685502. [Google Scholar]
- Briers, J.; Webster, S. Quasi real-time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields. Opt. Commun. 1995, 116, 36–42. [Google Scholar] [CrossRef]
- Ramirez-San-Juan, C.; Ramos-García, R.; Guizar-Iturbide, I.; Martínez-Niconoff, G.; Choi, B. Impact of velocity distri-bution assumption on simplified laser speckle imaging equation. Opt. Express 2008, 16, 3197–3203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Hughes, S.M.; Dayasundara, S.; Menon, R.S. Theoretical and experimental optimization of laser speckle contrast imaging for high specificity to brain microcirculation. Br. J. Pharmacol. 2006, 27, 258–269. [Google Scholar] [CrossRef]
- Duncan, D.D.; Kirkpatrick, S.J. Can laser speckle flowmetry be made a quantitative tool? J. Opt. Soc. Am. A 2008, 25, 2088–2094. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, A.B.; Kazmi, S.M.S.; Dunn, A.K. Quantitative imaging of ischemic stroke through thinned skull in mice with Multi Exposure Speckle Imaging. Biomed. Opt. Express 2010, 1, 246–259. [Google Scholar] [CrossRef] [Green Version]
- Nadort, A.; Woolthuis, R.G.; van Leeuwen, T.; Faber, D. Quantitative laser speckle flowmetry of the in vivo microcirculation using sidestream dark field microscopy. Biomed. Opt. Express 2013, 4, 2347–2361. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Kılıç, K.; Erdener, S.E.; Boas, D.A.; Postnov, D.D. Choosing a model for laser speckle contrast imaging. Biomed. Opt. Express 2021, 12, 3571–3583. [Google Scholar] [CrossRef]
- Tarantini, S.; Fulop, G.A.; Kiss, T.; Farkas, E.; Zölei-Szénási, D.; Galvan, V.; Toth, P.; Csiszar, A.; Ungvari, Z.; Yabluchanskiy, A. Demonstration of impaired neurovascular coupling responses in TG2576 mouse model of Alzheimer’s disease using functional laser speckle contrast imaging. GeroScience 2017, 39, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Lau, L.W.; Cha, J. Dual-display laparoscopic laser speckle contrast imaging for real-time surgical assistance. Biomed. Opt. Express 2018, 9, 5962–5981. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, A.B.; Weber, E.L.; Richards, L.M.; Fox, D.J.; Dunn, A.K. Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: A pilot clinical study. J. Biomed. Opt. 2010, 15, 066030. [Google Scholar] [CrossRef]
- Du, E.; Shen, S.; Chong, S.P.; Chen, N. Multifunctional laser speckle imaging. Biomed. Opt. Express 2020, 11, 2007–2016. [Google Scholar] [CrossRef] [PubMed]
- Du, E.; Shen, S.; Qiu, A.; Chen, N. Confocal laser speckle autocorrelation imaging of dynamic flow in microvasculature. Opto-Electron. Adv. 2021, in press. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, E.; Shen, S.; Qiu, A.; Chen, N. Line Scan Spatial Speckle Contrast Imaging and Its Application in Blood Flow Imaging. Appl. Sci. 2021, 11, 10969. https://doi.org/10.3390/app112210969
Du E, Shen S, Qiu A, Chen N. Line Scan Spatial Speckle Contrast Imaging and Its Application in Blood Flow Imaging. Applied Sciences. 2021; 11(22):10969. https://doi.org/10.3390/app112210969
Chicago/Turabian StyleDu, E, Shuhao Shen, Anqi Qiu, and Nanguang Chen. 2021. "Line Scan Spatial Speckle Contrast Imaging and Its Application in Blood Flow Imaging" Applied Sciences 11, no. 22: 10969. https://doi.org/10.3390/app112210969
APA StyleDu, E., Shen, S., Qiu, A., & Chen, N. (2021). Line Scan Spatial Speckle Contrast Imaging and Its Application in Blood Flow Imaging. Applied Sciences, 11(22), 10969. https://doi.org/10.3390/app112210969