Design and Performance Evaluation of a Cherry Tomato Calyx Remover
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Conveyor System for Cherry Tomatoes Removal
2.2. Test Sample
2.3. Experimental Design
2.3.1. Design Factors for Performance Analysis
2.3.2. Taguchi Orthoganal Arrays
2.4. Removal and Damage Rates of Cherry Tomatoes
2.5. Loss Function and S/N (Signal to Noise) Ratio
2.6. Analysis of the Influence of Control Factors on Cherry Tomato Calyx Removal
3. Results and Discussion
3.1. Cherry Tomato Calyx Remover Design Condition Analysis
3.2. Analysis of the Effect of Control Factors on the Removal of Cherry Tomato Calyx
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alzamora, S.M.; López-Malo, A.; Guerrero, S.N.; Tapia, M.S. The Hurdle Concept in Fruit Processing. In Food Engineering Series; Springer: Berlin/Heidelberg, Germany, 2018; pp. 93–126. [Google Scholar]
- Chen, F.; Zhang, M.; Yang, C.H. Application of Ultrasound Technology in Processing of Ready-to-Eat Fresh Food: A Review. Ultrason. Sonochem. 2020, 63, 104953. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Yu, H.Y.; Choi, D.S.; Hur, S.J. A Study on the Types and Growth Patterns of Microorganisms and Quality Characteristics in Cherry Tomatoes and Head Lettuces According to Storage Period and Temperature. Korean J. Food Nutr. 2013, 26, 700–705. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Ma, X.; Zou, M.; Jiang, P.; Hu, W.; Li, J.; Zhi, Z.; Chen, J.; Li, S.; Ding, T.; et al. Effects of Ultrasound on Spoilage Microorganisms, Quality, and Antioxidant Capacity of Postharvest Cherry Tomatoes. J. Food Sci. 2015, 80, C2117–C2126. [Google Scholar] [CrossRef]
- Crozier, A.; Lean, M.E.; McDonald, M.S.; Black, C. Quantitative Analysis of the Flavonoid Content of Commercial Tomatoes, Onions, Lettuce, and Celery. J. Agric. Food Chem. 1997, 45, 590–595. [Google Scholar] [CrossRef]
- George, B.; Kaur, C.; Khurdiya, D.S.; Kapoor, H.C. Antioxidants in Tomato (Lycopersium esculentum) as a Function of Genotype. Food Chem. 2004, 84, 45–51. [Google Scholar] [CrossRef]
- Leonardi, C.; Ambrosino, P.; Esposito, F.; Fogliano, V. Antioxidative Activity and Carotenoid and Tomatine Contents in Different Typologies of Fresh Consumption Tomatoes. J. Agric. Food Chem. 2000, 48, 4723–4727. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.M.E.; Mele, M.A.; Lee, Y.T.; Islam, M.Z. Consumer Preference, Quality, and Safety of Organic and Conventional Fresh Fruits, Vegetables, and Cereals. Foods 2021, 10, 105. [Google Scholar] [CrossRef]
- Rapa, M.; Ciano, S.; Ruggieri, R.; Vinci, G. Bioactive compounds in cherry tomatoes (Solanum Lycopersicum var. Cerasiforme): Cultivation techniques classification by multivariate analysis. Food Chem. 2021, 355, 129630. [Google Scholar] [CrossRef] [PubMed]
- Melfi, M.T.; Nardiello, D.; Cicco, N.; Candido, V.; Centonze, D. Simultaneous determination of water-and fat-soluble vitamins, lycopene and beta-carotene in tomato samples and pharmaceutical formulations: Double injection single run by reverse-phase liquid chromatography with UV detection. J. Food Compos. Anal. 2018, 70, 9–17. [Google Scholar] [CrossRef]
- Islam, M.Z.; Mele, M.A.; Choi, K.Y.; Kang, H.M. The effect of silicon and boron foliar application on the quality and shelf life of cherry tomatoes. Zemdirbyste-Agriculture 2018, 105, 159–164. [Google Scholar] [CrossRef]
- Barbosa-Cánovas, G.V. Handling and Preservation of Fruits and Vegetables by Combined Methods for Rural Areas: Technical Manual (No. 149); Food & Agriculture Org.: Rome, Italy, 2003. [Google Scholar]
- Li, Z.; Yang, H.; Li, P.; Liu, J.; Wang, J.; Xu, Y. Fruit Biomechanics Based on Anatomy: A Review. Int. Agrophys. 2013, 27, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Thomas, C. Quantitative Evaluation of Mechanical Damage to Fresh Fruits. Trends Food Sci. Technol. 2014, 35, 138–150. [Google Scholar] [CrossRef]
- Choi, J.W.; Lee, W.M.; Do, K.R.; Cho, M.A.; Kim, C.G.; Park, M.H.; Kim, J.G. Changes of Postharvest Quality and Microbial Population in Jujube-Shaped Cherry Tomato (Lycopersicon esculentum L.) by stemMaintenance or Removal. Korean Soc. Food Preserv. 2013, 20, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Van de Poel, B.; Bulens, I.; Hertog, M.L.A.T.M.; Van Gastel, L.; De Proft, M.P.; Nicolai, B.M.; Geeraerd, A.H. Model-Based Classification of Tomato Fruit Development and Ripening Related to Physiological Maturity. Postharvest Biol. Technol. 2012, 67, 59–67. [Google Scholar] [CrossRef]
- National Agricultural Products Quality Management Service (NAQS). Reform on Agricultural Products Qualitystandards. NAQS Notification No. 2011-45, Rep of Kor; National Agricultural Products Quality Management Service (NAQS): Gimcheon, Korea, 2011. [Google Scholar]
- Bakker-Arkema, F.W.; DeBaerdemaeker, J.; Amirante, P.; Ruiz-Altisent, M.; Studman, C.J. CIGR handbook of agricultural engineering. In Volume IV Agro-Processing Engineering; American Society of Agricultural Engineers: St. Joseph, MO, USA, 1999. [Google Scholar]
- Lin, J.; Holmes, M.; Vinson, R.; Ge, C.; Pogoda, F.C.; Mahon, L.; Gentry, R.; Seibel, G.E.; Chen, X.; Tao, Y. Design and testing of an automated high-throughput computer vision guided waterjet knife strawberry calyx removal machine. J. Food Eng. 2017, 211, 30–38. [Google Scholar] [CrossRef]
- Reich, M.; Dietz, M.; Jacobs, K. When Mandates Work; University of California Press: Berkeley, CA, USA, 2014. [Google Scholar]
- Schneider, D.; Harknett, K. Consequences of routine work-schedule instability for worker health and well-being. Am. Sociol. Rev. 2019, 84, 82–114. [Google Scholar] [CrossRef]
- Van Wely, P. Design and Disease. Appl. Ergon. 1970, 1, 262–269. [Google Scholar] [CrossRef]
- Karhu, O.; Kansi, P.; Kuorinka, I. Correcting Working Postures in Industry: A Practical Method for Analysis. Appl. Ergon. 1977, 8, 199–201. [Google Scholar] [CrossRef]
- Jeong, H.G.; Roh, Y.M.; Yim, H.W.; Park, C.Y.; Jeong, C.H. A Relationship Between Cumulative Trauma Disorder and the Type of Workstations and Chairs in Workers with Repetitive Motion Tasks. Korean J. Occup. Environ. Med. 2001, 13, 152–163. [Google Scholar] [CrossRef]
- Korea Agro-Fisheries & Food Trade Corporation. Korea Agricultural Marketing Information Service (KAMIS). 2021. Available online: http://www.kamis.or.kr (accessed on 25 October 2021).
- Chenthamarakshan, A.; Parambayil, N.; Miziriya, N.; Soumya, P.S.; Lakshmi, M.S.; Ramgopal, A.; Dileep, A.; Nambisan, P. Optimization of Laccase Production from Marasmiellus Palmivorus LA1 by Taguchi Method of Design of Experiments. BMC Biotechnol. 2017, 17, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, W.L.; Xie, M.J.; Wu, L.W.; Guo, Y.S.; Yau, H.T. The Optimization of Lathe Cutting Parameters Using a Hybrid Taguchi-Genetic Algorithm. IEEE Access 2020, 8, 169576–169584. [Google Scholar] [CrossRef]
Description | Unit | Specifications |
---|---|---|
Dimensions | (mm) | W370 × L980 × H940 |
Input port specification | (mm) | W364 × L450 × H70 |
Transport velocity | (mm/s) | 210~350 |
Throughput | (kg/h) | 100 |
Possible size | (mm) | 20~30 |
Brush material | - | Polyethylene |
Conveyor type | - | Belt conveyor |
Factors | Level 1 | Level 2 | Level 3 |
---|---|---|---|
Transport velocity (mm/s) | 210 | 280 | 350 |
Brush length (mm) | 70 | 80 | 90 |
Brush clearance (mm) | 20 | 22 | 24 |
Brush diameter (mm) | 0.8 | 1.0 | 1.2 |
Test No. | Combinations of Factors | |||
---|---|---|---|---|
Transport Velocity (mm/s) | Brush Length (mm) | Brush Clearance (mm) | Brush Diameter (mm) | |
1 | 210 | 70 | 20 | 0.8 |
2 | 210 | 80 | 22 | 1 |
3 | 210 | 90 | 24 | 1.2 |
4 | 280 | 70 | 22 | 1.2 |
5 | 280 | 80 | 24 | 0.8 |
6 | 280 | 90 | 20 | 1 |
7 | 350 | 70 | 24 | 1 |
8 | 350 | 80 | 20 | 1.2 |
9 | 350 | 90 | 22 | 0.8 |
Test No. | Circular-Shaped Cherry Tomato | Jujube-Shaped Cherry Tomato | ||||||
---|---|---|---|---|---|---|---|---|
Eliminate | Damage | Eliminate | Damage | |||||
AVE/SD (%) | SN Ratio (%) | AVE/SD (%) | SN Ratio (%) | AVE/SD (%) | SN Ratio (%) | AVE/SD (%) | SN Ratio (%) | |
R1 | 15.52 ± 8.65 | 22.61 | 15.52 ± 2.97 | −24.19 | 61.66 ± 2.35 | 35.71 | 38.33 ± 15.45 | −31.67 |
R2 | 30.28 ± 16.92 | 28.96 | 29.8 ± 3.94 | −29.72 | 62.19 ± 3.51 | 35.67 | 53 ± 12.66 | −34.56 |
R3 | 2.77 ± 2.07 | 8.34 | 2.85 ± 2.10 | −9.23 | 15.62 ± 4.57 | 23.69 | 1.85 ± 2.61 | −8.36 |
R4 | 27.94 ± 3.86 | 27.04 | 49.61 ± 7.89 | −33.94 | 86.87 ± 7.74 | 38.71 | 96.16 ± 0.57 | −39.66 |
R5 | 9.72 ± 8.56 | 17.26 | 2.77 ± 3.92 | −11.88 | 19.33 ± 15.48 | 22.14 | 9.89 ± 13.98 | −19.91 |
R6 | 31.25 ± 6.75 | 29.83 | 75.69 ± 4.28 | −37.62 | 100 ± 0 | 40.00 | 82.89 ± 9.84 | −38.37 |
R7 | 32.62 ± 8.87 | 30.26 | 81.07 ± 5.47 | −38.40 | 53.33 ± 4.71 | 33.71 | 75 ± 25.49 | −37.60 |
R8 | 4.94 ± 4.55 | 13.86 | 0 ± 0 | * | 89.26 ± 4.95 | 39.01 | 20.76 ± 2.97 | −26.34 |
R9 | 7.3 ± 5.22 | 10.38 | 56.11 ± 13.63 | −35.52 | 69.21 ± 0.70 | 36.62 | 75.91 ± 8.33 | −37.69 |
Level | Transport Velocity | Brush Length | Brush Clearance | Brush Diameter |
---|---|---|---|---|
1 | 19.98 | 26.64 | 22.11 | 16.75 |
2 | 24.72 | 20.03 | 22.13 | 29.69 |
3 | 18.17 | 16.19 | 18.62 | 16.42 |
Delta | 6.54 | 10.45 | 3.51 | 13.27 |
SS | 68.55 | 167.70 | 24.42 | 343.50 |
Contribution rate | 11.34 | 27.75 | 4.04 | 56.85 |
Rank | 3 | 2 | 4 | 1 |
Level | Transport Velocity | Brush Length | Brush Clearance | Brush Diameter |
---|---|---|---|---|
1 | −21.05 | −32.18 | −30.91 | −23.87 |
2 | −27.82 | −20.80 | −33.07 | −35.25 |
3 | −36.97 | −27.46 | −19.84 | −21.59 |
Delta | 15.91 | 11.38 | 13.22 | 13.66 |
SS | 304.20 | 155.40 | 292.00 | 289.60 |
Contribution rate | 29.21 | 14.92 | 28.04 | 27.81 |
Rank | 1 | 4 | 3 | 2 |
Level | Transport Velocity | Brush Length | Brush Clearance | Brush Diameter |
---|---|---|---|---|
1 | 31.69 | 36.05 | 38.24 | 31.50 |
2 | 33.62 | 32.28 | 37.01 | 36.46 |
3 | 36.45 | 33.44 | 26.52 | 33.81 |
Delta | 4.76 | 3.77 | 11.73 | 4.97 |
SS | 34.37 | 22.38 | 249.02 | 37.08 |
Contribution rate | 10.02 | 6.52 | 72.63 | 10.81 |
Rank | 3 | 4 | 1 | 2 |
Level | Transport Velocity | Brush Length | Brush Clearance | Brush Diameter |
---|---|---|---|---|
1 | −24.87 | −36.32 | −32.13 | −29.76 |
2 | −32.65 | −26.94 | −37.31 | −36.85 |
3 | −33.88 | −28.14 | −21.96 | −24.79 |
Delta | 9.01 | 9.38 | 15.35 | 12.05 |
SS | 143.40 | 156.20 | 365.90 | 220.20 |
Contribution rate | 16.19 | 17.63 | 41.32 | 24.86 |
Rank | 4 | 3 | 1 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Kang, S.; Park, H.; Woo, S.; Uyeh, D.D.; Ha, Y. Design and Performance Evaluation of a Cherry Tomato Calyx Remover. Appl. Sci. 2021, 11, 11016. https://doi.org/10.3390/app112211016
Kim Y, Kang S, Park H, Woo S, Uyeh DD, Ha Y. Design and Performance Evaluation of a Cherry Tomato Calyx Remover. Applied Sciences. 2021; 11(22):11016. https://doi.org/10.3390/app112211016
Chicago/Turabian StyleKim, Yeongsu, Seokho Kang, Hyunggyu Park, Seungmin Woo, Daniel Dooyum Uyeh, and Yushin Ha. 2021. "Design and Performance Evaluation of a Cherry Tomato Calyx Remover" Applied Sciences 11, no. 22: 11016. https://doi.org/10.3390/app112211016
APA StyleKim, Y., Kang, S., Park, H., Woo, S., Uyeh, D. D., & Ha, Y. (2021). Design and Performance Evaluation of a Cherry Tomato Calyx Remover. Applied Sciences, 11(22), 11016. https://doi.org/10.3390/app112211016