Potential Imaging Capability of Optical Coherence Tomography as Dental Optical Probe: A Mini-Review
Abstract
:Featured Application
Abstract
1. Introduction
2. Search Strategy
3. Application of OCT for Subgingival Area Visualization
3.1. Periodontal Tissues Condition
3.2. Peri-Implant Condition
3.3. Evaluation of Dental Prothesis Marginal Adaptation
4. Limitation of OCT and Future Clinical Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feldchtein, F.I.; Gelikonov, G.V.; Gelikonov, V.M.; Iksanov, R.R.; Kuranov, R.V.; Sergeev, A.M.; Gladkova, N.D.; Ourutina, M.N.; Warren, J.A.; Reitze, D.H. In vivo OCT imaging of hard and soft tissue of the oral cavity. Opt. Express 1998, 3, 239–250. [Google Scholar] [CrossRef]
- Aumann, S.; Donner, S.; Fischer, J.; Müller, F. Optical coherence tomography (OCT): Principle and technical realization. In High Resolution Imaging in Microscopy and Ophthalmology; Bille, J.F., Ed.; Springer: New York, NY, USA, 2019; pp. 59–85. [Google Scholar] [CrossRef] [Green Version]
- Machoy, M.; Seeliger, J.; Szyszka-Sommerfeld, L.; Koprowski, R.; Gedrange, T.; Woźniak, K. The use of optical coherence tomography in dental diagnostics: A state-of-the-art review. J. Health Eng. 2017, 2017, 1–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulus, M.; Gleason, S.S.; Kennel, S.J.; Hunsicker, P.R.; Johnson, D.K. High resolution X-ray computed tomography: An emerging tool for small animal cancer research. Neoplasia 2000, 2, 62–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarfe, W.C.; Li, Z.; Aboelmaaty, W.; Scott, S.A.; Farman, A.G. Maxillofacial cone beam computed tomography: Essence, elements and steps to interpretation. Aust. Dent. J. 2012, 57, 46–60. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, Y.; Shimada, Y.; Sadr, A.; Wada, I.; Miyashin, M.; Takagi, Y.; Tagami, J.; Sumi, Y. Detection of occlusal caries in primary teeth using swept source optical coherence tomography. J. Biomed. Opt. 2014, 19, 016020. [Google Scholar] [CrossRef]
- Xing, H.; Eckert, G.J.; Ando, M. Detection and analyzing plane of non-cavitated approximal caries by cross-polarized optical coherence tomography (CP-OCT). J. Dent. 2021, 110, 103679. [Google Scholar] [CrossRef]
- Shimada, Y.; Sadr, A.; Sumi, Y.; Tagami, J. Application of optical coherence tomography (OCT) for diagnosis of caries, cracks, and defects of restorations. Curr. Oral Health Rep. 2015, 2, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Shimada, Y.; Yoshiyama, M.; Tagami, J.; Sumi, Y. Evaluation of dental caries, tooth crack, and age-related changes in tooth structure using optical coherence tomography. Jpn. Dent. Sci. Rev. 2020, 56, 109–118. [Google Scholar] [CrossRef]
- Lee, S.-H.; Lee, J.-J.; Chung, H.-J.; Park, J.-T.; Kim, H.-J. Dental optical coherence tomography: New potential diagnostic system for cracked-tooth syndrome. Surg. Radiol. Anat. 2015, 38, 49–54. [Google Scholar] [CrossRef]
- Park, K.-J.; Schneider, H.; Haak, R. Assessment of interfacial defects at composite restorations by swept source optical coherence tomography. J. Biomed. Opt. 2013, 18, 076018. [Google Scholar] [CrossRef] [Green Version]
- Park, K.-J.; Schneider, H.; Haak, R. Assessment of defects at tooth/self-adhering flowable composite interface using swept-source optical coherence tomography (SS-OCT). Dent. Mater. 2015, 31, 534–541. [Google Scholar] [CrossRef]
- Sun, C.-W.; Ho, Y.-C.; Lee, S.-Y. Sensing of tooth microleakage based on dental optical coherence tomography. J. Sensors 2015, 2015, 1–6. [Google Scholar] [CrossRef]
- Holtzman, J.S.; Osann, K.; Bs, J.P.; Lee, K.; Ahn, Y.-C.; Tucker, T.; Sabet, S.; Chen, Z.; Gukasyan, R.; Wilder-Smith, P. Ability of optical coherence tomography to detect caries beneath commonly used dental sealants. Lasers Surg. Med. 2010, 42, 752–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, X.; Sowa, M.; Iacopino, A.; Maev, R.G.; Hewko, M.D.; Man, A.; Liu, K.-Z. An update on novel non-invasive approaches for periodontal diagnosis. J. Periodontol. 2010, 81, 186–198. [Google Scholar] [CrossRef] [Green Version]
- Mota, C.C.; Fernandes, L.O.; Cimões, R.; Gomes, A.S. Non-invasive periodontal probing through fourier-domain optical coherence tomography. J. Periodontol. 2015, 86, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-Y.; Chung, J.-H.; Lee, J.-S.; Kim, H.-J.; Choi, S.-H.; Jung, U.-W. Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: Anex vivostudy. J. Periodontal Implant. Sci. 2017, 47, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-H.; Kang, S.-R.; Park, H.-J.; Kim, J.-M.; Yi, W.-J.; Kim, T.-I. Improved accuracy in periodontal pocket depth measurement using optical coherence tomography. J. Periodontal Implant. Sci. 2017, 47, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, L.O.; Mota, C.C.B.O.; de Melo, L.S.A.; da Costa Soares, M.U.S.; da Silva Feitosa, D.; Gomes, A.S.L. In vivo assessment of periodontal structures and measurement of gingival sulcus with Optical Coherence Tomography: A pilot study. J. Biophotonics 2016, 10, 862–869. [Google Scholar] [CrossRef]
- Kakizaki, S.; Aoki, A.; Tsubokawa, M.; Lin, T.; Mizutani, K.; Koshy, G.; Sadr, A.; Oda, S.; Sumi, Y.; Izumi, Y. Observation and determination of periodontal tissue profile using optical coherence tomography. J. Periodontal Res. 2017, 53, 188–199. [Google Scholar] [CrossRef]
- Lee, J.; Park, J.; Shirazi, M.F.; Jo, H.; Kim, P.; Wijesinghe, R.E.; Jeon, M.; Kim, J. Classification of human gingival sulcus using swept-source optical coherence tomography: In vivo imaging. Infrared Phys. Technol. 2019, 98, 155–160. [Google Scholar] [CrossRef]
- Fernandes, L.O.; Mota, C.C.B.D.O.; Oliveira, H.O.; Neves, J.K.; Santiago, L.M.; Gomes, A.S.L. Optical coherence tomography follow-up of patients treated from periodontal disease. J. Biophotonics 2019, 12, e201800209. [Google Scholar] [CrossRef] [PubMed]
- Won, J.; Huang, P.-C.; Spillman, D.R.; Chaney, E.J.; Adam, R.; Klukowska, M.; Barkalifa, R.; Boppart, S.A. Handheld optical coherence tomography for clinical assessment of dental plaque and gingiva. J. Biomed. Opt. 2020, 25, 116011. [Google Scholar] [CrossRef]
- Hsieh, Y.-S.; Ho, Y.-C.; Lee, S.-Y.; Lu, C.-W.; Jiang, C.-P.; Chuang, C.-C.; Wang, C.-Y.; Sun, C.-W. Subgingival calculus imaging based on swept-source optical coherence tomography. J. Biomed. Opt. 2011, 16, 071409. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.; Horner, K.; Gröndahl, K.; Jacobs, R.; Helmrot, E.; Benic, G.I.; Bornstein, M.M.; Dawood, A.; Quirynen, M.E.A.O. guidelines for the use of diagnostic imaging in implant dentistry 2011. A consensus workshop organized by the European Association for Osseointegration at the Medical University of Warsaw. Clin. Oral Implant. Res. 2012, 23, 1243–1253. [Google Scholar] [CrossRef] [PubMed]
- Hämmerle, C.H.F.; Cordaro, L.; Van Assche, N.; I Benic, G.; Bornstein, M.M.; Gamper, F.; Gotfredsen, K.; Harris, D.; Hürzeler, M.; Jacobs, R.; et al. Digital technologies to support planning, treatment, and fabrication processes and outcome assessments in implant dentistry. Summary and consensus statements. The 4th EAO consensus conference 2015. Clin. Oral Implant. Res. 2015, 26, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, R.; Vranckx, M.; Vanderstuyft, T.; Quirynen, M.; Salmon, B. CBCT vs other imaging modalities to assess peri-implant bone and diagnose: A systematic review. Eur. J. Oral. Implantol. 2018, 11, s77–s92. [Google Scholar]
- García, M.G.; Mir-Mari, J.; Benic, G.I.; Figueiredo, R.; Valmaseda-Castellón, E. Accuracy of periapical radiography in assessing bone level in implants affected by peri-implantitis: A cross-sectional study. J. Clin. Periodontol. 2016, 43, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Serino, G.; Turri, A.; Lang, N.P. Probing at implants with peri-implantitis and its relation to clinical peri-implant bone loss. Clin. Oral Implant. Res. 2013, 24, 91–95. [Google Scholar] [CrossRef]
- Stanner, J.; Klum, M.; Parvini, P.; Zuhr, O.; Nickles, K.; Eickholz, P. Discomfort/pain due to periodontal and peri-implant probing: Implant type and age. J. Clin. Periodontol. 2017, 44, 749–755. [Google Scholar] [CrossRef]
- Parvini, P.; Saminsky, M.; Stanner, J.; Klum, M.; Nickles, K.; Eickholz, P. Discomfort/pain due to periodontal and peri-implant probing with/without platform switching. Clin. Oral Implant. Res. 2019, 30, 997–1004. [Google Scholar] [CrossRef]
- Sanda, M.; Shiota, M.; Imakita, C.; Sakuyama, A.; Kasugai, S.; Sumi, Y. The effectiveness of optical coherence tomography for evaluating peri-implant tissue: A pilot study. Imaging Sci. Dent. 2016, 46, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kang, S.-R.; Park, H.-J.; Kim, B.; Kim, T.-I.; Yi, W.-J. Quantitative measurement of peri-implant bone defects using optical coherence tomography. J. Periodontal Implant. Sci. 2018, 48, 84–91. [Google Scholar] [CrossRef]
- Ferro, K.J.; Morgano, S.M.; Driscoll, C.F.; Freilich, M.A.; Guckes, A.D.; Knoernschild, K.L. The glossary of prosthodontic terms: Ninth edition. J. Prosthet. Dent. 2017, 117, C1-e105. [Google Scholar] [CrossRef] [Green Version]
- Mounajjed, R.; Layton, D.; Azar, B. The marginal fit of E.max Press and E.max CAD lithium disilicate restorations: A critical review. Dent. Mater. J. 2016, 35, 835–844. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; Chung, K.; Ramos, V. Assessment of the adaptation of interim crowns using different measurement techniques. J. Prosthodont. 2019, 29, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xie, H.; Sadr, A.; Chung, K.-H. Evaluation of internal fit and marginal adaptation of provisional crowns fabricated with three different techniques. Sensors 2021, 21, 740. [Google Scholar] [CrossRef] [PubMed]
- Gabor, A.; Jivanescu, A.; Zaharia, C.; Hategan, S.; Topala, F.I.; Levai, C.M.; Negrutiu, M.L.; Sinescu, C.; Duma, V.-F.; Bradu, A.; et al. OCT evaluation of single ceramic crowns: Comparison between conventional and chair-side CAD/CAM technologies. In Sixth International Conference on Lasers in Medicine; International Society for Optics and Photonics: Bellingham, WA, USA, 2016; Volume 9670, p. 96700Z. [Google Scholar] [CrossRef]
- Otis, L.L.; Colston, B.W.; Everett, M.J.; Nathel, H. Dental optical coherence tomography: A comparison of two in vitro systems. Dentomaxillofac. Radiol. 2000, 29, 85–89. [Google Scholar] [CrossRef]
- Chopra, R.; Wagner, S.K.; Keane, P.A. Optical coherence tomography in the 2020s—Outside the eye clinic. Eye 2021, 35, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-C.; Lin, J.-Y.; Yao, C.-Y.; Lyu, D.-Y.; Lee, S.-Y.; Chen, K.-W.; Chen, I.-Y. Interactive OCT-based tooth scan and reconstruction. Sensors 2019, 19, 4234. [Google Scholar] [CrossRef] [Green Version]
- Erdelyi, R.-A.; Duma, V.-F.; Sinescu, C.; Dobre, G.; Bradu, A.; Podoleanu, A. Optimization of X-ray investigations in dentistry using optical coherence tomography. Sensors 2021, 21, 4554. [Google Scholar] [CrossRef]
Imaging Modality | Resolution (µm) | Penetration Depth | Source of Image |
---|---|---|---|
OCT | ~20 [3] | 1–3 mm | Near-infrared light |
Medical Ultrasound | 500–1500 [2] | 10–20 cm | Ultrasound |
Micro CT | ~50 [4] | Entire tissues | X-ray |
CBCT | 80–600 [5] | Entire tissues | X-ray |
Medical CT | 100–1000 [2] | Entire tissues | X-ray |
MRI | 100–1000 [2] | Entire tissues | Magnetic field |
No | Authors | Subjects | Subgingival Visualization | Main Findings | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
En | D | DEJ | CEJ | FG | AG | AB | Ep | CT | CD | ||||
1 | Mota et al. (2015) [16] | Porcines (ex vivo) | + | + | + | − | + | + | + | + | + | + | OCT can visualize periodontal structures. Longer wavelength shows a deeper tissue penetration. |
2 | Park et al. (2017) [17] | Beagle dogs (ex vivo) | + | + | + | − | + | − | − | + | + | + | OCT can generate high resolution cross-sectional images of superficial periodontal structures |
3 | Kim et al. (2017) [18] | Porcines (ex vivo) | + | + | + | − | + | + | - | + | + | − | OCT can visualize periodontal pockets as well as show attachment loss |
4 | Fernandes et al. (2017) [19] | Human (in vivo) | + | + | + | + | + | + | + | + | + | + | OCT potentially can evaluate periodontal tissues and measure gingival sulcus depth |
5 | Kakizaki et al. (2017) [20] | Human (in vivo) | + | + | + | − | + | + | + | + | + | − | OCT can visualize and analyze the morphological structure of periodontal tissues in details. |
6 | Lee et al. (2017) [21] | Human (in vivo) | + | + | + | − | + | − | − | + | + | − | OCT can be used to quantitatively measure gingival sulcus depth |
7 | Fernandes et al. (2017) [22] | Human (in vivo) | + | + | + | + | + | + | + | + | + | + | OCT can be used to identify periodontal structures in follow-up of PD treatments. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Putra, R.H.; Yoda, N.; Astuti, E.R.; Sasaki, K. Potential Imaging Capability of Optical Coherence Tomography as Dental Optical Probe: A Mini-Review. Appl. Sci. 2021, 11, 11025. https://doi.org/10.3390/app112211025
Putra RH, Yoda N, Astuti ER, Sasaki K. Potential Imaging Capability of Optical Coherence Tomography as Dental Optical Probe: A Mini-Review. Applied Sciences. 2021; 11(22):11025. https://doi.org/10.3390/app112211025
Chicago/Turabian StylePutra, Ramadhan Hardani, Nobuhiro Yoda, Eha Renwi Astuti, and Keiichi Sasaki. 2021. "Potential Imaging Capability of Optical Coherence Tomography as Dental Optical Probe: A Mini-Review" Applied Sciences 11, no. 22: 11025. https://doi.org/10.3390/app112211025
APA StylePutra, R. H., Yoda, N., Astuti, E. R., & Sasaki, K. (2021). Potential Imaging Capability of Optical Coherence Tomography as Dental Optical Probe: A Mini-Review. Applied Sciences, 11(22), 11025. https://doi.org/10.3390/app112211025