Improving Spatial Reuse of Wireless LAN Uplink Using BSS Color and Proximity Information
Abstract
:1. Introduction
- We show that the BSS color can be used to predict the location of other APs, which can be used to estimate the interference received by the other AP when the node transmits a packet. Furthermore, we introduce the “proximity information” that can be included in the preamble. This proximity information together with the BSS color can be used to determine whether a node receiving the preamble can start a parallel transmission or not.
- We propose a new method called PSC-UL that uses the BSS color and proximity information to dynamically control carrier sense threshold of the STAs. The proposed method improves spatial reuse for UL communications.
- We conduct extensive simulations to evaluate performance of the proposed method under various environments and parameters, comparing with other existing methods such as OBSS/PD, PSR and Dual-CST [5].
2. Related Work
3. Proposed Method
3.1. Idea Overview
- : received power of the signal from node A to AP1.
- : received power of the interference from node B to AP1.
- : received power of the signal from node B to AP2.
- : received power of the interference from node A to AP2.
3.2. Protocol Details
3.2.1. Neighbor Table
3.2.2. Proximity Information
3.2.3. Protocol Operation
4. Performance Evaluation
4.1. Simulation Setup
4.2. Simulation Results
4.2.1. Varying Number of Nodes
4.2.2. Varying Number of APs
4.2.3. Varying Area Size
4.2.4. Varying Margin
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACK | Acknowledgment |
AP | Access Point |
BSS | Basic Service Set |
CA | Collision Avoidance |
CCA | Clear Channel Assessment |
CMAP | Conflict Map |
CSMA | Carrier Sense Multiple Access |
CSMA/CA | Carrier Sense Multiple Access/Collision Avoidance |
CST | Carrier Sense Threshold |
CTS | Clear-To-Send |
DCF | Distributed Coordination Function |
DL | Downlink |
DLMA | Deep reinforcement Learning Multiple Access |
DQN | Deep Q Network |
DSC | Dynamic Sensitivity Control |
EMA | Exponential Moving Average |
ETX | Expected Transmission Count |
FER | Frame Error Rate |
HE | High Efficiency |
LAN | Local Area Network |
MCS | Modulation and Coding Scheme |
MLP | Multi-Layer Perceptron |
MU-MIMO | Multi-User Multiple Input Multiple Output |
NRF | National Research Foundation |
OBSS | Overlapping BSS |
OBSS/PD | Overlapping BSS/Preamble Detection |
PPDU | PLCP Protocol Data Unit |
PSC-UL | Proximity-based Sensitivity Control for UL |
PSR | Parameterized Spatial Reuse |
RU | Resource Unit |
PER | Packet Error Rate |
RSSI | Received Signal Strength Indicator |
RTS | Request-To-Send |
SNR | Signal-to-Noise Ratio |
STA | Station |
TB | Trigger-Based |
TF | Trigger Frame |
UDP | User Datagram Protocol |
UL | Uplink |
WLAN | Wireless Local Area Networks |
References
- Bellalta, B. IEEE 802.11ax: High-efficiency WLANs. IEEE Wirel. Commun. 2016, 23, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.; Fang, X.; Han, X.; Wang, X.; Yan, L.; He, R.; Long, Y.; Guo, Y. IEEE 802.11be Wi-Fi 7: New Challenges and Opportunities. IEEE Commun. Surv. Tutor. 2020, 22, 2136–2166. [Google Scholar] [CrossRef]
- Adame, T.; Bel, A.; Bellalta, B.; Barcelo, J.; Oliver, M. IEEE 802.11AH: The WiFi approach for M2M communications. IEEE Wirel. Commun. 2014, 21, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Wilhelmi, F.; Barrachina-Munoz, S.; Cano, C.; Selinis, I.; Bellalta, B. Spatial Reuse in IEEE 802.11ax WLANs. Comput. Commun. 2021, 170, 65–83. [Google Scholar] [CrossRef]
- So, J.; Lee, J. Dynamic Carrier-Sense Threshold Selection for Improving Spatial Reuse in Dense Wireless LANs. Appl. Sci. 2019, 9, 3591. [Google Scholar] [CrossRef] [Green Version]
- Tsertou, A.; Laurenson, D.I. Revisiting the Hidden Terminal Problem in a CSMA/CA Wireless Network. IEEE Trans. Mob. Comput. 2008, 7, 817–831. [Google Scholar] [CrossRef]
- Yang, X.; Vaidya, N. On physical carrier sensing in wireless ad hoc networks. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM), Miami, FL, USA, 13–17 March 2005. [Google Scholar]
- Jiang, L.B.; Liew, S.C. Improving Throughput and Fairness by Reducing Exposed and Hidden Nodes in 802.11 Networks. IEEE Trans. Mob. Comput. 2007, 7, 34–49. [Google Scholar] [CrossRef]
- Nakahira, T.; Ishihara, K.; Asai, Y.; Takatori, Y.; Kudo, R.; Mizoguchi, M. Centralized control of carrier sense threshold and channel bandwidth in high-density WLANs. In Proceedings of the Asia-Pacific Microwave Conference (APMC), Sendai, Japan, 14–17 November 2014. [Google Scholar]
- Chakraborty, S.; Nandi, S.; Chattopadhyay, S. Alleviating Hidden and Exposed Nodes in High-Throughput Wireless Mesh Networks. IEEE Trans. Wirel. Commun. 2015, 15, 928–937. [Google Scholar] [CrossRef]
- Vutukuru, M.; Jamieson, K.; Balakrishnan, H. Harnessing Exposed Terminals in Wireless Networks. In Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation (NSDI 08), San Francisco, CA, USA, 16–18 April 2008. [Google Scholar]
- Chau, C.K.; Ho, I.W.H.; Situ, Z.; Liew, S.C.; Zhang, J. Effective Static and Adaptive Carrier Sensing for Dense Wireless CSMA Networks. IEEE Trans. Mob. Comput. 2017, 16, 355–366. [Google Scholar] [CrossRef] [Green Version]
- Hosseinabadi, G.; Vaidya, N. Concurrent-MAC: Increasing concurrent transmissions in dense wireless LANs. In Proceedings of the International Conference on Computing, Networking and Communications (ICNC), Kauai, HI, USA, 15–18 February 2016. [Google Scholar]
- Eliab, A.; Kim, Y.; Lee, J.; Lee, J.G.; So, J. G-DCF: Improving System Spectral Efficiency through Concurrent Transmissions in Wireless LANs. Wirel. Commun. Mob. Comput. 2019, 2019, 5427573. [Google Scholar] [CrossRef]
- Selinis, I.; Filo, M.; Vahid, S.; Rodriguez, J.; Tafazolli, R. Evaluation of the DSC algorithm and the BSS color scheme in dense cellular-like IEEE 802.11ax deployments. In Proceedings of the IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 4–8 September 2016. [Google Scholar]
- Tayamon, S.; Wikstrom, G.; Moreno, K.P.; Soder, J.; Wang, Y.; Mestanov, F. Analysis of the potential for increased spectral reuse in wireless LAN. In Proceedings of the IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, China, 30 August–2 September 2015. [Google Scholar]
- Kulkarni, P.; Cao, F. Taming the densification challenge in next generation wireless LANs: An investigation into the use of dynamic sensitivity control. In Proceedings of the IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Abu Dhabi, United Arab Emirates, 19–21 October 2015. [Google Scholar]
- Mvulla, J.; Park, E.C.; Adnan, M.; Son, J.H. Analysis of asymmetric hidden node problem in IEEE 802.11ax heterogeneous WLANs. In Proceedings of the International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 28–30 October 2015. [Google Scholar]
- Zhong, Z.; Cao, F.; Kulkarni, P.; Fan, Z. Promise and perils of Dynamic Sensitivity control in IEEE 802.11ax WLANs. In Proceedings of the International Symposium on Wireless Communication Systems (ISWCS), Poznan, Poland, 20–23 September 2016. [Google Scholar]
- Afaqui, M.S.; Garcia-Villegas, E.; Lopez-Aguilera, E.; Smith, G.; Camps, D. Evaluation of dynamic sensitivity control algorithm for IEEE 802.11ax. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA, USA, 9–12 March 2015. [Google Scholar]
- Afaqui, M.S.; Garcia-Villegas, E.; Lopez-Auguilera, E. Dynamic sensitivity control algorithm leveraging adaptive RTS/CTS for IEEE 802.11ax. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Doha, Qatar, 3–6 April 2016. [Google Scholar]
- Ropitault, T.; Golmie, N. ETP algorithm: Increasing spatial reuse in wireless LANs dense environment using ETX. In Proceedings of the IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017. [Google Scholar]
- Wilhelmi, F.; Barrachina-Munoz, S.; Bellalta, B. On the Performance of the Spatial Reuse Operation in IEEE 802.11ax WLANs. In Proceedings of the IEEE Conference on Standards for Communications and Networking (CSCN), Granada, Spain, 28–30 October 2019. [Google Scholar]
- De Carvalho Rodrigues, E.; Garcia-Rodriguez, A.; Giordano, L.G.; Geraci, G. On the Latency of IEEE 802.11ax WLANs with Parameterized Spatial Reuse. arXiv 2020, arXiv:2008.07482. [Google Scholar]
- Garcia-Rodriguez, A.; Lopez-Perez, D.; Galati-Giordano, L.; Geraci, G. IEEE 802.11be: Wi-Fi 7 Strikes Back. IEEE Commun. Mag. 2021, 59, 102–108. [Google Scholar] [CrossRef]
- Murakami, K.; Ito, T.; Ishihara, S. Improving the spatial reuse of IEEE 802.11 WLAN by adaptive carrier sense threshold of access points based on node positions. In Proceedings of the International Conference on Mobile Computing and Ubiquitous Networking (ICMU), Hokkaido, Japan, 20–22 January 2015. [Google Scholar]
- Adere, K.; Murthy, G.R. Solving the hidden and exposed terminal problems using directional-antenna based MAC protocol for wireless sensor networks. In Proceedings of the International Conference on Wireless and Optical Communications Networks (WOCN), Colombo, Sri Lanka, 6–8 September 2010. [Google Scholar]
- Wang, L.; Wu, K.; Hamdi, M. Combating Hidden and Exposed Terminal Problems in Wireless Networks. IEEE Trans. Wirel. Commun. 2012, 11, 4204–4213. [Google Scholar] [CrossRef]
- Jamil, I.; Cariou, L.; Helard, J.F. Novel learning-based spatial reuse optimization in dense WLAN deployments. EURASIP J. Wirel. Commun. Netw. 2016, 2016, 184. [Google Scholar] [CrossRef] [Green Version]
- Wilhelmi, F.; Cano, C.; Neu, G.; Bellalta, B. Collaborative Spatial Reuse in wireless networks via selfish Multi-Armed Bandits. Ad Hoc Netw. 2019, 88, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Wilhelmi, F.; Barrachina-Munoz, S.; Bellalta, B.; Cano, C.; Jonsson, A.; Neu, G. Potential and pitfalls of Multi-Armed Bandits for decentralized Spatial Reuse in WLANs. J. Netw. Comput. Appl. 2019, 127, 26–42. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Liu, H.; Gomes, P.H.; Krishnamachari, B. Deep Reinforcement Learning for Dynamic Multichannel Access in Wireless Networks. IEEE Trans. Cogn. Commun. Netw. 2018, 4, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Naparstek, O.; Cohen, K. Deep Multi-User Reinforcement Learning for Distributed Dynamic Spectrum Access. IEEE Trans. Wirel. Commun. 2019, 18, 310–323. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Wang, T.; Liew, S.C. Deep-Reinforcement Learning Multiple Access for Heterogeneous Wireless Networks. IEEE J. Sel. Areas Commun. 2019, 37, 1277–1290. [Google Scholar] [CrossRef] [Green Version]
- Ak, E.; Canberk, B. FSC: Two-Scale AI-Driven Fair Sensitivity Control for 802.11ax Networks. In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Yin, B.; Yamamoto, K.; Nishio, T.; Morikura, M.; Abeysekera, H. Learning-Based Spatial Reuse for WLANs With Early Identification of Interfering Transmitters. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 151–164. [Google Scholar] [CrossRef]
- Szott, S.; Kosek-Szott, K.; Gawłowicz, P.; Gómez, J.T.; Bellalta, B.; Zubow, A.; Dressler, F. WiFi Meets ML: A Survey on Improving IEEE 802.11 Performance with Machine Learning. arXiv 2021, arXiv:2109.04786. [Google Scholar]
- Huang, J.; Xing, G.; Zhou, G. Unleashing exposed terminals in enterprise WLANs: A rate adaptation approach. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM), Toronto, ON, Canada, 27 April–2 May 2014. [Google Scholar]
- Krotov, A.; Kiryanov, A.; Khorov, E. Rate Control With Spatial Reuse for Wi-Fi 6 Dense Deployments. IEEE Access 2020, 8, 168898–168909. [Google Scholar] [CrossRef]
- Wojcicki, P.; Zientarski, T.; Charytanowicz, M.; Lukasik, E. Estimation of the Path-Loss Exponent by Bayesian Filtering Method. Sensors 2021, 21, 1934. [Google Scholar] [CrossRef]
(a) | (b) | ||||
---|---|---|---|---|---|
Neighbor_Table of B | Neighbor_Table of AP2 | ||||
BSSID | Color | RSSI | BSSID | Color | RSSI |
00:00:00:00:00:01 | 1 | −76 | 00:00:00:00:00:01 | 1 | −72 |
00:00:00:00:00:02 | 2 | −44 | 00:00:00:00:00:03 | 3 | −63 |
00:00:00:00:00:03 | 3 | −68 | 00:00:00:00:00:04 | 4 | −88 |
00:00:00:00:00:05 | 5 | −87 | 00:00:00:00:00:05 | 5 | −83 |
Value | Meaning | Value | Meaning |
---|---|---|---|
0 | PI_UNKNOWN | 8 | PI = −52 dBm |
1 | PI ≤ −80 dBm | 9 | PI = −48 dBm |
2 | PI = −76 dBm | 10 | PI = −44 dBm |
3 | PI = −72 dBm | 11 | PI = −40 dBm |
4 | PI = −68 dBm | 12 | PI = −36 dBm |
5 | PI= −64 dBm | 13 | PI = −32 dBm |
6 | PI = −60 dBm | 14 | PI = −28 dBm |
7 | PI = −56 dBm | 15 | PI ≥ −24 dBm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; So, J. Improving Spatial Reuse of Wireless LAN Uplink Using BSS Color and Proximity Information. Appl. Sci. 2021, 11, 11074. https://doi.org/10.3390/app112211074
Kim H, So J. Improving Spatial Reuse of Wireless LAN Uplink Using BSS Color and Proximity Information. Applied Sciences. 2021; 11(22):11074. https://doi.org/10.3390/app112211074
Chicago/Turabian StyleKim, Hyerin, and Jungmin So. 2021. "Improving Spatial Reuse of Wireless LAN Uplink Using BSS Color and Proximity Information" Applied Sciences 11, no. 22: 11074. https://doi.org/10.3390/app112211074
APA StyleKim, H., & So, J. (2021). Improving Spatial Reuse of Wireless LAN Uplink Using BSS Color and Proximity Information. Applied Sciences, 11(22), 11074. https://doi.org/10.3390/app112211074