Controlling Conditions of the One-Dimensional Consolidation Test on Peat Soil
Abstract
:1. Introduction
2. Materials and Methods
- ➀
- Sand (from 0 m to 3.3 m);
- ➁
- Clay (from 3.3 m to 5.1 m);
- ➂
- Peat (from 5.0 m to 5.3 m);
- ➃
- Clay (from 5.3 m to 8.9 m);
- ➄
- Peat (from 8.9 m to 9.6 m).
- ➀
- The first way is to spray a small amount of the thymol solution on the upper and lower surface of the soil sample and to wet the filter paper. During the test, a cotton cloth is covered with solution to maintain the moisture level.
- ➁
- The second way is to quickly pour the thymol solution into the consolidation box and to immerse the sample after the first load is added.
3. Results and Discussion
3.1. Effect of Test Temperature on Consolidation of Peat Soil
4. High Load
5. Effect of thymol
6. Effect of Specimen Height
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wüst, R.A.; Bustin, R.; Lavkulich, L.M. New classification systems for tropical organic-rich deposits based on studies of the Tasek Bera Basin, Malaysia. Catena 2003, 53, 133–163. [Google Scholar] [CrossRef]
- Davis, J.H. The peat deposits of Florida, their occurrence, development and uses (FGS: Bulletin 30). Fisioter. Pesqui. 1946, 21, 337–339. [Google Scholar] [CrossRef]
- Ma, X. Carbon Storage and Emission of Peatland in China; Beijing, China Forestry Press: Beijing, China, 2013. [Google Scholar]
- MCPRC (Ministry of Construction of the People’s Republic of China). Code for Investigation of Geotechnical Engineering; Appendix A; China Construction Industry Press: Beijing, China, 2009.
- Mesri, G.; Ajlouni, M. Engineering Properties of Fibrous Peats. J. Geotech. Geoenvironmental Eng. 2007, 133, 850–866. [Google Scholar] [CrossRef]
- Jorat, M.E.; Kreiter, S.; Mörz, T.; Moon, V.; De Lange, W. Strength and compressibility characteristics of peat stabilized with sand columns. Geomech. Eng. 2013, 5, 575–594. [Google Scholar] [CrossRef]
- Acharya, M.P.; Hendry, M.T.; Martin, C.D. Quantification of the Settlement of an Embankment Constructed on Peat due to the Expulsion of Gases. Int. J. Geomech. 2017, 17, 04016088. [Google Scholar] [CrossRef]
- Jiang, Z. Peat Soil in Dianchi Lake; Sichuan Province, Southwest Jiaotong University Press: Chengdu, China, 1994. [Google Scholar]
- Tashiro, M.; Inagaki, M.; Asaoka, A. Prediction of and countermeasures for embankment-related settlement in ultra-soft ground containing peat. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, 2–6 September 2013. [Google Scholar]
- MacFarlane, I.C. Some Preliminary Consolidation Tests on Peat; Internal Report (National Research Council of Canada. Division of Building Research); no. DBR-IR-318; National Research Council of Canada: Ottawa, ON, Canada, 1965. [CrossRef]
- Lytton, R. Foundation engineering in difficult ground. Eng. Geol. 1981, 17, 79–80. [Google Scholar] [CrossRef]
- Fox, P.J.; Edil, T.B. Effects of stress and temperature on secondary compression of peat. Can. Geotech. J. 1996, 33, 405–415. [Google Scholar] [CrossRef]
- Mesri, G.; Stark, T.D.; Ajlouni, M.A.; Chen, C.S. Secondary Compression of Peat with or without Surcharging. J. Geotech. Geoenvironmental Eng. 1997, 123, 411–421. [Google Scholar] [CrossRef]
- Madaschi, A.; Gajo, A. One-dimensional response of peaty soils subjected to a wide range of oedometric conditions. Geotechnique 2015, 65, 274–286. [Google Scholar] [CrossRef]
- Mesri, G. Time-and stress-compressibility interrelationship. J. Geotech. Geoenvironmental Eng. 1977, 103, 417–430. [Google Scholar] [CrossRef]
- Acharya, M.P.; Hendry, M.T.; Martin, C.D. Creep behaviour of intact and remoulded fibrous peat. Acta Geotechnica. 2017, 13, 1–19. [Google Scholar] [CrossRef]
- Hanson, J.L.; Edil, T.B.; Fox, P.J. Stress-Temperature Effects on Peat Compression. Geotech. Spec. Publ. 2001, 331–345. [Google Scholar] [CrossRef] [Green Version]
- Dhowian, A.; Edil, T. Consolidation Behavior of Peats. Geotech. Test. J. 1980, 3, 10. [Google Scholar] [CrossRef]
- Lozet, J.; Mathieu, C. Dictionary of Soil Science. Soil. Sci. 1993, 155, 73. [Google Scholar] [CrossRef]
- Prokopovich, N.P. Subsidence of Peat in California and Florida. Environ. Eng. Geosci. 1985, xxii, 395–420. [Google Scholar] [CrossRef]
- Laiho, R. Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol. Biochem. 2006, 38, 2011–2024. [Google Scholar] [CrossRef]
- Philben, M.; Kaiser, K.; Benner, R. Does oxygen exposure time control the extent of organic matter decomposition in peatlands? J. Geophys. Res. Biogeosciences 2014, 119, 897–909. [Google Scholar] [CrossRef]
- Klarić, M.E.; Kosalec, I.; Mastelić, J.; Piecková, E.; Pepeljnak, S. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett. Appl. Microbiol. 2007, 44, 36–42. [Google Scholar] [CrossRef]
- O’Kelly, B.C.; Zhang, L. Consolidated-Drained Triaxial Compression Testing of Peat. Geotech. Test. J. 2013, 36, 310–321. [Google Scholar] [CrossRef] [Green Version]
- Long, M.; Boylan, N. Predictions of settlement in peat soils. Q. J. Eng. Geol. Hydrogeol. 2013, 46, 303–322. [Google Scholar] [CrossRef] [Green Version]
- Carlsten, P. Geotechnical properties of peat. In State of the Art, 2nd ed.; Baltic Conference on Soil Mechanics and Foundation Engineering: Tallinn, Estonia, 1988. [Google Scholar]
- Lefebvre, G.; Langlois, P.; Lupien, C.; Lavallée, J.-G. Laboratory testing and in situ behaviour of peat as embankment foundation. Can. Geotech. J. 1984, 21, 322–337. [Google Scholar] [CrossRef]
- O’Kelly, B.C. Effective stress strength testing of peat. Environ. Geotech. 2015, 2, 34–44. [Google Scholar] [CrossRef]
- Sun, J. Diabatic Heating Characteristics in the East Peripheral Area of Qinghai-Tibetan Plateau and its Climate Effect during Spring-Summer Transition Season. Ph.D. Thesis, School of Atmospheric Science, Nanjing University of Information Science & Technology, Nanjing, China, 2011. [Google Scholar]
- Gao, Y.B.; Zhu, H.H.; Guan-Bao, Y.E.; Chao, X.U. The investigation of the coefficient of secondary compression Ca in odometer tests. Chin. J. Geotech. Eng. 2004, 26, 5. [Google Scholar] [CrossRef]
- Gui, Y.; Yu, Z.H.; Liu, H.M.; Cao, J.; Wang, Z.C. Secondary consolidation properties and mechanism of plateau lacustrine peaty soil. Chin. J. Geotech. Eng. 2015, 37, 1390–1398. [Google Scholar] [CrossRef]
- RIHMT (Research Institute of Highway Ministry of Transport). Test Methods of Soils for Highway Engineering; People’s Communications Press: Beijing, China, 2020. [Google Scholar]
- Piotr, Z.; Rydelek, P.; Bąkowska, A. Geo-engineering properties of Eemian peats from Radzymin (central Poland) in the light of static cone penetration and dilatometer tests. Eng. Geology 2017, 226, 290–300. [Google Scholar] [CrossRef]
- Liu, K.; Xue, J.; Yang, M. Deformation behaviour of geotechnical materials with gas bubbles and time dependent compressible organic matter. Eng. Geol. 2016, 213, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Bosch, A.; Schmidt, K.; He, J.-S.; Doerfer, C.; Scholten, T. Potential CO2 emissions from defrosting permafrost soils of the Qinghai-Tibet Plateau under different scenarios of climate change in 2050 and 2070. Catena 2017, 149, 221–231. [Google Scholar] [CrossRef]
- Lal, R. Soil Erosion and Gaseous Emissions. Appl. Sci. 2020, 10, 2784. [Google Scholar] [CrossRef] [Green Version]
- Berg, B.; Mcclaugherty, C. Plant Litter. In Decomposition, Humus Formation, Carbon Sequestration; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Jarvis, S.C.; Stockdale, E.A.; Shepherd, M.A.; Powlson, D.S. Nitrogen Mineralization in Temperate Agricultural Soils: Processes and Measurement. Adv. Agron. 1996, 57, 187–235. [Google Scholar] [CrossRef]
- Schimel, J.P.; Bennett, J. Nitrogen Mineralization: Challenges of A Changing Paradigm. Ecology 2004, 85, 591–602. [Google Scholar] [CrossRef]
- De Figueiredo, C.C.; Coser, T.R.; Moreira, T.N.; Leão, T.P.; Vale, A.T.D.; Paz-Ferreiro, J. Carbon Mineralization in a Soil Amended with Sewage Sludge-Derived Biochar. Appl. Sci. 2019, 9, 4481. [Google Scholar] [CrossRef] [Green Version]
- Broadbent, F.E.; Nakashima, T. Mineralization of Carbon and Nitrogen in Soil Amended with Carbon13 and Nitrogen15 Labeled Plant Material1. Soil Sci. Soc. Am. J. 1974, 38, 34–37. [Google Scholar] [CrossRef]
- Avnimelech, Y.; McHenry, J.R.; Ross, J.D. Decomposition of organic matter in lake sediments. Environ. Sci. Technol. 1984, 18, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.E.; Corronado-Molina, C.; Childers, D.L.; Day, J.W. Temporally Dependent C, N, and P Dynamics Associated with the Decay of Rhizophora mangle L. Leaf Litter in Oligotrophic Mangrove Wetlands of the Southern Everglades. Aquat. Bot. 2003, 75, 199–215. [Google Scholar] [CrossRef] [Green Version]
- Alexander, H. Increasing Red Maple Leaf Litter Alters Decomposition Rates and Nitrogen Cycling in Historically Oak-Dominated Forests of the Eastern U.S. Ecosystems 2014, 17, 1383. [Google Scholar] [CrossRef]
- Rabarijoely, S. A Bayesian Approach in the Evaluation of Unit Weight of Mineral and Organic Soils Based on Dilatometer Tests (DMT). Appl. Sci. 2019, 9, 3779. [Google Scholar] [CrossRef] [Green Version]
- Lei, H.; He, C.; Qiu, W.; Chen, L. Experimental Research on Size Effect Upon Consolidation Propert y of Hydraulic Reclamation Soft Clay. J. Tianjin Univ. Sci. Technol. 2016, 49, 7. [Google Scholar] [CrossRef]
Purpose | Specimen | Organic Matter Content | Location | LOI (%) | Specific Gravity | Density (g/cm3) | Moisture Content (%) | Saturation (%) |
---|---|---|---|---|---|---|---|---|
Effect of test temperature | T1 | Highly organic peaty soil | West Lake, Dali | 58.8 | 1.98 | 1.09 | 217.14 | 90.32 |
T2 | Low organic peaty soil | 21.4 | 2.20 | 1.49 | 62.36 | 98.7 | ||
T3 | Highly organic peaty soil | 48.8 | 1.93 | 1.25 | 140.94 | 98.21 | ||
T4 | Low organic peaty soil | 32.1 | 1.89 | 1.25 | 162.05 | 99.57 | ||
Effect of thymol (S stands for use method ①, J stands for use method ②) | S1 | Highly organic peaty soil | West Lake, Dali | 42.6 | 1.9 | 1.27 | 167.31 | 98.52 |
S2 | Highly organic peaty soil | 41.8 | 1.98 | 0.92 | 177.15 | 72.04 | ||
S3 | Highly organic peaty soil | 40.2 | 1.9 | 1.23 | 175.15 | 98.44 | ||
S4 | Medium organic peaty soil | 33.0 | 1.9 | 1.31 | 96.17 | 92.85 | ||
S5 | Highly organic peaty soil | 41.1 | 1.89 | 1.25 | 162.05 | 99.57 | ||
S6 | Medium organic peaty soil | 33.1 | 1.89 | 1.3 | 117.98 | 98.61 | ||
S7 | Highly organic peaty soil | 48.8 | 1.93 | 1.25 | 140.94 | 98.21 | ||
S8 | Peat | 61.6 | 1.93 | 1.21 | 175.74 | 98.37 | ||
J1 | Highly organic peaty soil | 41.2 | 1.94 | 1.08 | 362.75 | 95.82 | ||
J2 | Highly organic peaty soil | 44.1 | 1.03 | 269.70 | 87.31 | |||
J3 | Highly organic peaty soil | 59.2 | 1.87 | 1.28 | 128.50 | 98.04 | ||
J4 | Highly organic peaty soil | 55.8 | 1.29 | 109.48 | 94.69 | |||
J5 | Highly organic peaty soil | 50.3 | 1.23 | 114.16 | 89.75 | |||
J6 | Highly organic peaty soil | 47.0 | 1.29 | 119.50 | 97.22 | |||
J7 | Highly organic peaty soil | 43.8 | 1.31 | 117.51 | 97.23 | |||
S9 | Peat | Eryuan, Dali | 66.5 | 2.08 | 1.09 | 251.06 | 91.56 | |
S10 | Highly organic peaty soil | 55.8 | 1.14 | 222.25 | 95.14 | |||
Effect of specimen height | H1 | Mucky soil | West Lake, Dali | 5.4 | 2.18 | 1.71 | 51.21 | - |
H2 | Low organic peaty soil | Eryuan, Dali | 20.8 | 2.08 | 1.388 | 103.26 | ||
H3 | Medium organic peaty soil | West Lake, Dali | 34.7 | 2.01 | 1.18 | 203.54 | ||
H4 | Highly organic peaty soil | 56 | 1.93 | 1.04 | 338.25 | |||
H5 | Peat | 75.2 | 1.87 | 0.92 | 590.8 |
Purpose | Specimen | Height (mm) | Ambient Temperature (°C) | Thymol Concentration (%) | Load Level (kPa) and Loading Time | Total Time (d) |
---|---|---|---|---|---|---|
Effect of test temperature | T1 | 20 | Uncontrolled | 0 | 12.5-25 (79 h per level) | 6.5 |
T2 | 12.5-25 (79 h per level) | 6.5 | ||||
T3 | 12.5 (24 h)-25 (24 h)-50 (24 h)-100 (24 h)-200 (24 h)-400 (24 h)-800 (53 h) | 8.2 | ||||
T4 | 12.5 (24 h)-25 (24 h)-50 (24 h)-100 (24 h)-200 (24 h)-400 (24 h)-800 (53 h) | 8.2 | ||||
Effect of thymol | S1 | 20 | 23 | 0 | 12.5-25-50-100-200-400-800 (24 h per level) | 7 |
S2 | 0 | 12.5-25-50-100-200-400-800 (24 h per level) | 7 | |||
S3 | 1 | 12.5-25-50-100-200-400-800 (24 h per level) | 7 | |||
S4 | 1 | 12.5-25-50-100-200-400-800 (24 h per level) | 7 | |||
S5 | 0 | 12.5-25-50-100-200-400-800 (24 h per level) | 7 | |||
S6 | 0 | 12.5 (24 h)-25 (24 h)-50 (24 h)-100 (24 h)-200 (24 h)-400 (24 h)-800 (53 d) | 59 | |||
S7 | 1 | 12.5 (24 h)-25 (24 h)-50 (24 h)-100 (24 h)-200 (24 h)-400 (24 h)-800 (53 d) | 59 | |||
S8 | 1 | 12.5-25-50-100-200-400-800 (24 h per level) | 7 | |||
J1 | 0 | 12.5 (24 h)-25 (24 h)-50 (24 h)-100 (24 h)-200 (24 h)-400 (24 h)-800 (53 d) | 59 | |||
J2 | 1 | 12.5 (24 h)-25 (24 h)-50 (24 h)-100 (24 h)-200 (24 h)-400 (24 h)-800 (53 d) | 59 | |||
J3 | 1 | 12.5 (3 d)-25 (5 d)-50 (6 d)-100 (11 d)-200 (10 d)-400 (16 d)-800 (13 d) | 63 | |||
J4 | 1 | 12.5 (3 d)-25 (5 d)-50 (6 d)-100 (11 d)-200 (10 d)-400 (16 d)-800 (13 d) | 63 | |||
J5 | 1 | 12.5 (3 d)-25 (5 d)-50 (6 d)-100 (11 d)-200 (10 d)-400 (15 d)-800 (13 d) | 62 | |||
J6 | 1 | 12.5 (3 d)-25 (5 d)-50 (6 d)-100 (11 d)-200 (10 d)-400 (15 d)-800 (13 d) | 62 | |||
J7 | 0 | 12.5 (3 d)-25 (5 d)-50 (6 d)-100 (11 d)-200 (10 d)-400 (16 d)-800 (15 d) | 66 | |||
S9 | 20 | 20 | 0 | 12.5 (24 h)-25 (24 h)-50 (24 h)-100 (24 h)-200 (24 h)-400 (24 h)-800 (53 d) | 59 | |
S10 | 1 | 12.5 (24 h)-25 (24 h)-50 (24 h)-100 (24 h)-200 (24 h)-400 (24 h)-800 (53 d) | 59 | |||
Effect of specimen height | H1 | 20, 25, 30, 35 and 40 | 23 | 1 | 12.5-25-50-100-200-400-800 (24 h per level) | 7 |
H2 | 20 | 12.5 (24 h)-25 (24 h)-50 (24 h)-100 (80 h)-200 (41 h)-400 (60 h)-800 (63 h) | 13 | |||
H3 | 23 | 12.5 (24 h)-25 (24 h)-50 (24 h)-100 (46 h)-200 (87 h)-400 (93 h)-800 (81 h) | 15.8 | |||
H4 | 12.5 (24 h)-25 (38 h)-50 (61 h)-100 (80 h)-200 (44 h)-400 (96 h)-800 (96 h) | 18.3 | ||||
H5 | 12.5 (24 h)-25 (85 h)-50 (71 h)-100 (80 h)-200 (118 h)-400 (43 h)-800 (43 h) | 19.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, B.; Feng, R.; Wu, L.; Shen, Y. Controlling Conditions of the One-Dimensional Consolidation Test on Peat Soil. Appl. Sci. 2021, 11, 11125. https://doi.org/10.3390/app112311125
Peng B, Feng R, Wu L, Shen Y. Controlling Conditions of the One-Dimensional Consolidation Test on Peat Soil. Applied Sciences. 2021; 11(23):11125. https://doi.org/10.3390/app112311125
Chicago/Turabian StylePeng, Bo, Ruiling Feng, Lijian Wu, and Yupeng Shen. 2021. "Controlling Conditions of the One-Dimensional Consolidation Test on Peat Soil" Applied Sciences 11, no. 23: 11125. https://doi.org/10.3390/app112311125
APA StylePeng, B., Feng, R., Wu, L., & Shen, Y. (2021). Controlling Conditions of the One-Dimensional Consolidation Test on Peat Soil. Applied Sciences, 11(23), 11125. https://doi.org/10.3390/app112311125