Assessment the Visual Clarity of the Projector in Classroom and Innovative Asymmetric Distribution LED Tube Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Selection of the Slideshow Content and Luminaires Switching Rules
2.2. The Clarity Perception Experiment and Statistics of the Experimental Results
- AS(j): The average score of the perception for a certain slide m under specific lighting control condition j
- k: Total number of the slides in the experiment
- j: Lighting control conditions
- TAS: The total average screen clarity score under various lighting control conditions.
2.3. Image Luminance Meter and Luminance Measurment of the Projection Screen
- AL(j): The average luminance for a certain slide (m) under specific lighting control condition (j)
- k: Total number of the slides in the experiment
- j: Lighting control conditions
- TAL: The overall average luminance of the screen under various lighting control conditions.
2.4. Establish a Quantitative Relationship between Screen Clarity and Visual Luminance
2.5. Formulate the Relation between Screen Clarity and Average Luminance on Screen
2.6. Visual Clarity Classification and the Corresponding Value of Average Luminance
2.7. Discuss and Suggestions on the Lighting Control of Classroom Lighting Luminaires
- Lighting control method: The classroom is 10 m long and 11 m wide. The luminaires are arranged as (5 × 4). There are five rows of luminaires paralleled to the projection screen near the blackboard used for the switch control experiment.
- (a)
- Level A: All of the luminaires are turned on.
- (b)
- Level B: Turn off the first row luminaires.
- (c)
- Level C: Turn off the first and second rows luminaires.
- (d)
- Level D: Turn off the first, second and third rows luminaires.
- (e)
- Level E: Turn off the first, second, third and fourth rows luminaires.
- (f)
- Level F: All of the lights are turned off.
- Measure the luminance of the slideshow content: content pictures as shown in Table 1.
- Setting up the image luminance meter: 110 cm height from the ground.
3. Results
3.1. Case Study of Evaluating the Vertical Plane Clarity in the Projection Screen Area
3.2. Innovative Asymmetric Distribution LED Tube and Lighting Configuration in the Classroom
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baeza Moyano, D.; González-Lezcano, R.A. Pandemic of childhood myopia. Could new indoor LED lighting be part of the solution? Energies 2021, 14, 3827. [Google Scholar] [CrossRef]
- Yang, G.; Huang, L.-H.; Schmid, K.L.; Li, C.-G.; Chen, J.-Y.; He, G.-H.; Liu, L.; Ruan, Z.-L.; Chen, W.-Q. Associations between Screen Exposure in Early Life and Myopia amongst Chinese Preschoolers. Int. J. Environ. Res. Public Health 2020, 17, 1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, H.-C.; Chang, K.; Shen, E.; Luo, K.-S.; Ying, Y.-H. Risk Factors and Behaviours of Schoolchildren with Myopia in Taiwan. Int. J. Environ. Res. Public Health 2020, 17, 1967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Health Promotion Administration, Taiwan. Available online: https://www.hpa.gov.tw/Pages/List.aspx?nodeid=45 (accessed on 10 August 2021).
- Chiou, Y.-S.; Saputro, S.; Sari, D.P. Visual comfort in modern university classrooms. Sustainability 2020, 12, 3930. [Google Scholar] [CrossRef]
- Peng, S.; Chen, Y.; Tang, X.; Heynderickx, I. Lighting for projector use in school classrooms to improve visibility. In Proceedings of the 2014 11th China International Forum on Solid State Lighting (SSLCHINA), Guangzhou, China, 6–8 November 2014; pp. 9–13. [Google Scholar]
- Bellia, L.; Spada, G.; Pedace, A.; Fragliasso, F. Methods to evaluate lighting quality in educational environments. Energy Procedia 2015, 78, 3138–3143. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Shi, H.; Chen, Q.-W.; Ru, T.; Zhou, G. Investigation of the Optimum Display Luminance of an LCD Screen under Different Ambient Illuminances in the Evening. Appl. Sci. 2021, 11, 4108. [Google Scholar] [CrossRef]
- Shalamanov, V. Tests for Investigation of the Psycho-Phisiological Impact of Light and Ergonomic Lighting Indicators of LED Lighting Systems. In Proceedings of the 2020 12th Electrical Engineering Faculty Conference (BulEF); IEEE: Manhattan, NY, USA, 2020; pp. 1–7. [Google Scholar]
- Rempel, A.G.; Heidrich, W.; Li, H.; Mantiuk, R. Video viewing preferences for HDR displays under varying ambient illumination. In Proceedings of the APGV ’09: Proceedings of the 6th Symposium on Applied Perception in Graphics and Visualization, Chania Crete, Greece, 30 September–2 October 2009; Association for Computing Machinery: New York, NY, USA, 2009; pp. 45–52. [Google Scholar]
- Peña-García, A.; Salata, F. Indoor Lighting Customization Based on Effective Reflectance Coefficients: A Methodology to Optimize Visual Performance and Decrease Consumption in Educative Workplaces. Sustainability 2021, 13, 119. [Google Scholar] [CrossRef]
- Boyce, P.; Wilkins, A. Visual discomfort indoors. Light. Res. Technol. 2018, 50, 98–114. [Google Scholar] [CrossRef]
- The International Commission on Illumination (CIE). CIE232-2019: Discomfort Caused by Glare from Luminaires with a Non-Uniform Source Luminance; CIE: Vienna, Austria, 2019. [Google Scholar]
- Coleman, D. Screen Brightness Uniformity: Analysis and Comparisons. In Proceedings of the SMPTE 2016 Annual Technical Conference and Exhibition, Hollywood, CA, USA, 25–27 October 2016; pp. 1–16. [Google Scholar]
- Kim, S.-R.; Lee, S.-H.; Jeon, D.-H.; Kim, J.-S.; Lee, S.-W. Optimum display luminance dependence on ambient illuminance. Opt. Eng. 2017, 56, 17110. [Google Scholar] [CrossRef]
- Shi, Y.; Tu, Y.; Wang, L.; Zhang, Y.; Gao, X. Influence of Display Luminance on Visual Discomfort in Dark Ambient Based on Haemodynamic Response. IEEE Photon J. 2020, 12, 1–14. [Google Scholar] [CrossRef]
- Kim, M.; Jeon, D.-H.; Kim, J.-S.; Yu, B.-C.; Park, Y.; Lee, S.-W. Optimum display luminance depends on white luminance under various ambient illuminance conditions. Opt. Eng. 2018, 57, 024106. [Google Scholar] [CrossRef]
- Pracki, P. Impact of Direct Lighting Luminaires’ Luminous Intensity Distribution on Lighting Quality in Interiors. In Proceedings of the 2018 VII. Lighting Conference of the Visegrad Countries (Lumen V4), Trebic, Czech Republic, 18–20 September 2018; pp. 1–6. [Google Scholar]
- Skoda, J.; Sumec, S.; Baxant, P.; Motycka, M. Influence of background luminance on UGR result. In Proceedings of the 2016 IEEE Lighting Conference of the Visegrad Countries (Lumen V4), Karpacz, Poland, 13–16 September 2016; pp. 1–4. [Google Scholar]
- Yang, J.; Zhang, T.; Lin, Y.; Xu, W. Effect of Illuminance and Light Strobe on Attention and Visual Fatigue in Indoor Lighting. In Proceedings of the 2019 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China (SSL China: IFWS), Shenzhen, China, 25–27 November 2019; pp. 149–152. [Google Scholar]
- Ruan, C.; Xu, T.; Huang, Y.; Wang, Y. Research on the application of health light environment in classroom. In Proceedings of the 2020 17th China International Forum on Solid State Lighting & 2020 International Forum on Wide Bandgap Semiconductors China (SSL China: IFWS), Shenzhen, China, 23–25 November 2020; pp. 184–187. [Google Scholar]
- Elsisi, M.; Tran, M.-Q.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Deep Learning-Based Industry 4.0 and Internet of Things Towards Effective Energy Management for Smart Buildings. Sensors 2021, 21, 1038. [Google Scholar] [CrossRef] [PubMed]
- Elsisi, M.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Reliable Industry 4.0 Based on Machine Learning and IoT for Analyzing, Monitoring, and Securing Smart Meters. Sensors 2021, 21, 487. [Google Scholar] [CrossRef] [PubMed]
- Tran, M.-Q.; Elsisi, M.; Mahmoud, K.; Liu, M.-K.; Lehtonen, M.; Darwish, M.M.F. Experimental Setup for Online Fault Diagnosis of Induction Machines via Promising IoT and Machine Learning: Towards Industry 4.0 Empowerment. IEEE Access 2021, 9, 115429–115441. [Google Scholar] [CrossRef]
- Elsisi, M.; Tran, M.-Q.; Mahmoud, K.; Mansour, D.-E.A.; Lehtonen, M.; Darwish, M.M.F. Towards Secured Online Monitoring for Digitalized GIS Against Cyber-Attacks Based on IoT and Machine Learning. IEEE Access 2021, 9, 78415–78427. [Google Scholar] [CrossRef]
- Tsvetkova Darina, Tree Frog of Image. Available online: https://www.shutterstock.com/zh-Hant/image-photo/green-frog-red-eyes-sits-on-1890606178 (accessed on 15 November 2021).
- Temple Landscape (Day View). Available online: https://www.tibetrundreisen.com/assets/images/itineraries-images/jokhang-tempel-in-lhasa782.jpg (accessed on 15 November 2021).
- Temple Landscape (Night View). Available online: https://www.alighting.cn/case/20200403/45077.htm (accessed on 15 November 2021).
- Cable-Stayed Bridge Landscape (Day View). Available online: https://www.alighting.cn/case/20200323/44956.htm (accessed on 15 November 2021).
- Cable-Stayed Bridge Landscape (Night View). Available online: https://www.alighting.cn/case/20200323/44956.htm (accessed on 15 November 2021).
- Arch Bridge Landscape (Day View). Available online: https://wantubizhi.com/image.aspx (accessed on 15 November 2021).
- Arch Bridge Landscape (Night View). Available online: https://th.bing.com/th/id/OIP.1hlYzhfehCjSlNAFskuKzQHaFj?pid=ImgDet&rs=1 (accessed on 15 November 2021).
Coordinate | Col 1 | Col 2 | Col 3 | Col 4 | Col 5 | Col 6 | Col 7 | Col 8 | Col 9 | Col 10 |
---|---|---|---|---|---|---|---|---|---|---|
Row 1 | 100.015 | 95.355 | 93.711 | 82.243 | 73.075 | 68.770 | 62.997 | 59.192 | 58.131 | 55.816 |
Row 2 | 197.579 | 187.604 | 167.469 | 141.486 | 140.622 | 108.894 | 103.356 | 102.357 | 108.443 | 122.797 |
Row 3 | 238.606 | 226.600 | 199.572 | 175.677 | 206.812 | 135.163 | 130.625 | 133.732 | 149.787 | 175.821 |
Row 4 | 239.752 | 231.326 | 213.022 | 191.924 | 238.889 | 158.980 | 152.222 | 153.641 | 168.788 | 190.383 |
Row 5 | 243.091 | 234.059 | 222.230 | 202.988 | 252.888 | 173.890 | 171.349 | 172.947 | 181.686 | 201.566 |
Row 6 | 220.436 | 219.304 | 207.153 | 198.206 | 250.548 | 175.460 | 172.132 | 172.318 | 182.212 | 197.079 |
Row 7 | 192.984 | 190.613 | 186.080 | 179.248 | 246.235 | 163.685 | 158.604 | 164.241 | 162.055 | 176.793 |
Row 8 | 167.621 | 163.984 | 160.034 | 154.886 | 162.765 | 148.869 | 144.864 | 151.092 | 153.333 | 157.043 |
Row 9 | 148.340 | 151.464 | 150.155 | 144.809 | 148.430 | 140.809 | 142.378 | 146.943 | 143.201 | 152.572 |
Row 10 | 149.214 | 146.634 | 142.448 | 142.734 | 141.843 | 139.059 | 132.941 | 138.977 | 138.766 | 139.997 |
Luminance Average: 161.595 Luminance Maximum: 252.888 Luminance Medium: 158.980 Luminance Minimum: 55.816 Uniformity of Luminance U0: 0.345 |
Lighting Control Mode | Overall Average Luminance (cd/m2) | Overall Clarity Score |
---|---|---|
Level 1 | 180.72 (180 ± 2%) | 2.40 |
Level 2 | 90.56 (90 ± 2%) | 4.61 |
Level 3 | 52.14 (52 ± 2%) | 5.74 |
Level 4 | 12.879 (12 ± 2%) | 9.41 |
y = −2.61ln(x) + 16.118 | ||
---|---|---|
Human Eye Perception | y (Clarity) | x (Average Luminance, cd/m2) |
The blurriest 20% | 2 | 223.45 |
Blurry 40% | 4 | 103.85 |
Normal 60% | 6 | 48.26 |
Clear 80% | 8 | 22.42 |
The clearest 100% | 10 | 10.42 |
Item | Specification | Distribution |
---|---|---|
Voltage (V) | 100~240 | |
Frequency (Hz) | 60 | |
Lumens (lm) | 2000 ± 10% | |
Efficacy (lm/W) | >100 | |
Color temp. (K) | 5700 ± 300 | |
Color rendering | >80 |
Lighting Control | Overall Average Luminance (cd/m2) | Overall Average Clarity Score (Points) |
---|---|---|
Level A | 174.117 | 2.23 |
Level B | 95.666 | 3.99 |
Level C | 59.552 | 6.11 |
Level D | 37.577 | 7.88 |
Level E | 25.951 | 8.71 |
Level F | 15.985 | 9.78 |
y = −3.3 ln(x) + 19.356 | ||
---|---|---|
Human Eye Perception | y (Clarity) | x (Average Luminance, cd/m2) |
The blurriest 20% | 2 | 192.365 |
Blurry 40% | 4 | 104.934 |
Normal 60% | 6 | 57.241 |
Clear 80% | 8 | 31.225 |
The clearest 100% | 10 | 17.032 |
Lighting Control | Total Average Luminance (cd/m2) | Human Eye Perception |
---|---|---|
Level A | 174.117 (174 ± 2%) | Blurry/the blurriest |
Level B | 95.666 (95 ± 2%) | Normal/blurry |
Level C | 59.552 (59 ± 2%) | Normal/little blurry |
Level D | 37.577 (37 ± 2%) | Normal/clear |
Level E | 25.951 (25 ± 2%) | Clear and the clearest |
Level F | 15.985 (15 ± 2%) | The clearest |
Items | Level A: All Luminaires Turn On | Level B: 1st Row Luminaires Turn Off |
---|---|---|
Illuminance (lux), average | 489 | 445 |
Illuminance (lux), (a) | 340 | 270 |
Illuminance (lux), (b) | 583 | 556 |
Luminance (cd/m2), (c) | 17.25 | 13.15 |
Luminance (cd/m2), (d) | 9.39 | 7.11 |
UGR vertical plane | 11.6 | ≤10 |
UGR (d) | 11.0 | ≤10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.-H.; Hsiao, C.-Y.; Gu, J.-C.; Liu, K.-Y.; Chang, C.-H.; Lee, C.-E.; Yan, S.-F. Assessment the Visual Clarity of the Projector in Classroom and Innovative Asymmetric Distribution LED Tube Applications. Appl. Sci. 2021, 11, 11153. https://doi.org/10.3390/app112311153
Liu C-H, Hsiao C-Y, Gu J-C, Liu K-Y, Chang C-H, Lee C-E, Yan S-F. Assessment the Visual Clarity of the Projector in Classroom and Innovative Asymmetric Distribution LED Tube Applications. Applied Sciences. 2021; 11(23):11153. https://doi.org/10.3390/app112311153
Chicago/Turabian StyleLiu, Chun-Hsi, Chun-Yu Hsiao, Jyh-Cherng Gu, Kuan-Yi Liu, Chih-Hung Chang, Chen-En Lee, and Shu-Fen Yan. 2021. "Assessment the Visual Clarity of the Projector in Classroom and Innovative Asymmetric Distribution LED Tube Applications" Applied Sciences 11, no. 23: 11153. https://doi.org/10.3390/app112311153
APA StyleLiu, C. -H., Hsiao, C. -Y., Gu, J. -C., Liu, K. -Y., Chang, C. -H., Lee, C. -E., & Yan, S. -F. (2021). Assessment the Visual Clarity of the Projector in Classroom and Innovative Asymmetric Distribution LED Tube Applications. Applied Sciences, 11(23), 11153. https://doi.org/10.3390/app112311153