Comprehensive Assessment of Left Intraventricular Hemodynamics Using a Finite Element Method: An Application to Dilated Cardiomyopathy Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Data Acquisition
2.3. Data Analysis
2.4. Local Hemodynamics
2.5. Statistical Analysses
3. Results
3.1. Study Population
3.2. Global Hemodynamics
3.3. Sensitivity Study, Intra-, and Inter-Observer Reproducibility
3.4. Local Hemodynamics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Intra- and Inter-Observer Reproducibility
References
- Hershberger, R.E.; Morales, A. Dilated Cardiomyopathy Overview. GeneReviews®. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1309/ (accessed on 27 July 2007).
- Mahmaljy, H.; Yelamanchili, V.S.; Singhal, M. Dilated Cardiomyopathy. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Hill, J.A.; Olson, E.N. Cardiac plasticity. N. Engl. J. Med. 2008, 358, 1370–1380. [Google Scholar] [CrossRef]
- Wong, M.; Staszewsky, L.; Latini, R.; Barlera, S.; Glazer, R.; Aknay, N.; Hester, A.; Anand, I.; Cohn, J.N. Severity of left ventricular remodeling defines outcomes and response to therapy in heart failure: Valsartan heart failure trial (Val-HeFT) echocardiographic data. J. Am. Coll. Cardiol. 2004, 43, 2022–2027. [Google Scholar] [CrossRef] [Green Version]
- McNally, E.M.; Mestroni, L. Dilated Cardiomyopathy: Genetic Determinants and Mechanisms. Circ. Res. 2007, 121, 731–748. [Google Scholar] [CrossRef]
- Frangi, A.F.; Niessen, W.J.; Viergever, M.A. Three-dimensional modeling for functional analysis of cardiac images: A review. IEEE Trans. Med. Imaging 2007, 20, 2–25. [Google Scholar] [CrossRef]
- Markl, M.; Frydrychowicz, A.; Kozerke, S.; Hope, M.; Wieben, O. 4D Flow MRI. J. Magn. Reson. Imaging 2012, 36, 1015–1036. [Google Scholar] [CrossRef] [PubMed]
- Dyverfeldt, P.; Bissell, M.; Barker, A.J.; Bolger, A.F.; Carlhäll, C.-J.; Ebbers, T.; Francios, C.J.; Frydrychowicz, A.; Geiger, J.; Giese, D.; et al. 4D Flow cardiovascular magnetic resonance consensus statement. J. Cardiovasc. Magn. Reson. 2015, 17, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotelo, J.; Urbina, J.; Valverde, I.; Tejos, C.; Andia, M.; Hurtado, D.; Uribe, S. Three-dimensional quantification of vorticity and helicity from 3D cine PC-MRI using finite-element interpolations. Magn. Reson. Med. 2018, 79, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Sotelo, J.; Urbina, J.; Valverde, I.; Tejos, J.; Irarrazaval, P.; Andia, M.; Uribe, S.; Hurtado, D. 3D Quantification of Wall Shear Stress and Oscillatory Shear Index Using a Finite-Element Method in 3D CINE PC-MRI Data of the Thoracic Aorta. IEEE Trans. Med. Imaging 2016, 35, 1475–1487. [Google Scholar] [CrossRef]
- Sotelo, J.; Dux-Santoy, L.; Guala, A.; Rodríguez-Palomares, J.; Evangelista, A.; Sing-Long, C.; Urbina, J.; Mura, J.; Hurtado, D.; Uribe, S. 3D axial and circumferential wall shear stress from 4D Flow MRI data using a finite element method and a laplacian approach. Magn. Reson. Med. 2018, 79, 2816–2823. [Google Scholar] [CrossRef]
- Wong, K.K.; Kelso, R.M.; Worthley, S.G.; Sanders, P.; Mazumdar, J.; Abbott, D. Cardiac flow analysis applied to phase contrast magnetic resonance imaging of the heart. Ann. Biomed. Eng. 2009, 37, 1495–1515. [Google Scholar] [CrossRef] [Green Version]
- Al-Wakeel, N.; Fernandes, J.F.; Amiri, A.; Siniawski, H.; Goubergrits, L.; Berger, F.; Kuehne, T. Hemodynamic and energetic aspects of the left ventricle in patients with mitral regurgitation before and after mitral valve surgery. J. Magn. Reson. Imaging 2015, 42, 1705–1712. [Google Scholar] [CrossRef] [PubMed]
- Svalbring, E.; Fredriksson, A.; Eriksson, J.; Dyverfeldt, P.; Ebbers, T.; Bolder, A.F.; Engvall, J.; Carlhäll, C.-J. Altered Diastolic Flow Patterns and Kinetic Energy in Subtle Left Ventricular Remodeling and Dysfunction Detected by 4D Flow MRI. PLoS ONE 2016, 11, e0161391. [Google Scholar] [CrossRef] [Green Version]
- Fredriksson, A.; Trzebiatowska-Krzynska, A.; Dyverfeldt, P.; Engvall, J.; Ebbers, T.; Carlhäll, C.-J. Turbulent kinetic energy in the right ventricle: Potential MR marker for risk stratification of adults with repaired Tetralogy of Fallot. J. Magn. Reson. Imaging 2018, 47, 1043–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Töger, J.; Kanski, M.; Carlsson, M.; Kovács, S.J.; Söderlind, G.; Arheden, H.; Heiberg, E. Vortex ring formation in the left ventricle of the heart: Analysis by 4D Flow MRI and Lagrangian coherent structures. Ann. Biomed. Eng. 2012, 40, 2652–2662. [Google Scholar] [CrossRef] [PubMed]
- Browning, J.R.; Hertzberg, J.R.; Schroeder, J.D.; Fenster, B.E. 4D Flow Assessment of Vorticity in Right Ventricular Diastolic Dysfunction. Bioengineering 2017, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Hirtler, D.; Garcia, J.; Barker, A.J.; Geiger, J. Assessment of intracardiac flow and vorticity in the right heart of patients after repair of tetralogy of Fallot by flow-sensitive 4D MRI. Eur. Radiol. 2016, 26, 3598–3607. [Google Scholar] [CrossRef] [PubMed]
- Suwa, K.; Saitoh, T.; Takehara, Y.; Sano, M.; Saotome, M.; Urushida, T.; Katoh, H.; Satoh, H.; Sugiyama, M.; Wakayama, T.; et al. Intra-left ventricular flow dynamics in patients with preserved and impaired left ventricular function: Analysis with 3D cine phase contrast MRI (4D-Flow). J. Magn. Reson. Imaging 2016, 44, 1493–1503. [Google Scholar] [CrossRef]
- Kanski, M.; Arvidsson, P.M.; Töger, J.; Borgquist, R.; Heiberg, E.; Carlsson, M.; Arheden, H. Left ventricular fluid kinetic energy time curves in heart failure from cardiovascular magnetic resonance 4D Flow data. J. Cardiovasc. Magn. Reson. 2015, 17, 111. [Google Scholar] [CrossRef]
- Zajac, J.; Eriksson, J.; Dyverfeldt, P.; Bolder, A.F.; Carlhäll, C.-J. Turbulent kinetic energy in normal and myopathic left ventricles. J. Magn. Reson. Imaging 2015, 41, 1021–1029. [Google Scholar] [CrossRef] [Green Version]
- Arvidsson, P.M.; Kovács, S.J.; Töger, J.; Borgquist, R.; Heiberg, E.; Carlsson, M.; Arheden, H. Vortex ring behavior provides the epigenetic blueprint for the human heart. Sci. Rep. 2016, 6, 22021. [Google Scholar] [CrossRef] [Green Version]
- Pedrizzetti, G.; La Canna, G.; Alfieri, O.; Tonti, G. The vortex—An early predictor of cardiovascular outcome? Nat. Rev. Cardiol. 2014, 11, 545–553. [Google Scholar] [CrossRef]
- Sjöberg, P.; Heiberg, E.; Wingren, P.; Johansson, J.R.; Malm, T.; Arheden, H.; Liuba, P.; Carlsson, M. Decreased Diastolic Ventricular Kinetic Energy in Young Patients with Fontan Circulation Demonstrated by Four-Dimensional Cardiac Magnetic Resonance Imaging. Pediatr. Cardiol. 2017, 8, 669–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotelo, J.; Urbina, J.; Valverde, I.; Irarrázaval, P.; Hurtado, D.; Uribe, S. Quantification of wall shear stress using a finite-element method in multidimensional phase-contrast MR data of the thoracic aorta. J. Biomech. 2015, 48, 1817–1827. [Google Scholar] [CrossRef]
- Elliott, P.; Andersson, B.; Arbustini, E.; Bilinska, Z.; Cecchi, F.; Charron, P.; Dubourg, O.; Kühl, U.; Maisch, M.; McKenna, W.J.; et al. Classification of the cardiomyopathies: A position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2008, 29, 270–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerfoot, E.; Fovargue, L.; Rivolo, S.; Shi, W.; Rueckert, D.; Nordsletten, D.; Lee, J.; Chabiniok, R.; Razavi, R. Visualization and Computational Framework for Multi-modal Biomedical Data Analysis. In Medical Imaging and Augmented Reality, MIAR; Zheng, G., Liao, H., Jannin, P., Cattin, P., Lee, S.L., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2016; Volume 9805. [Google Scholar]
- Heiberg, E.; Sjögren, J.; Ugander, M.; Carlsson, M.; Engblom, H.; Arheden, H. Design and validation of Segment–freely available software for cardiovascular image analysis. BMC Med. Imaging 2010, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Tufvesson, J.; Hedstrom, E.; Steding-Ehrenborg, K.; Carlsson, M.; Arheden, H.; Heiberg, E. Validation and Development of a New Automatic Algorithm for Time-Resolved Segmentation of the Left Ventricle in Magnetic Resonance Imaging. Biomed. Res. Int. 2015, 2015, 970357. [Google Scholar] [CrossRef] [PubMed]
- Heiberg, E.; Wigström, L.; Carlsson, M.; Bolger, A.F.; Karlsson, M. Time Resolved Three-dimensional Segmentation of the Left Ventricle. Proc. IEEE Comput. Cardiol. 2005, 32, 599–602. [Google Scholar]
- Fang, Q.; Boas, D. Tetrahedral mesh generation from volumetric binary and gray-scale images. In Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, USA, 28 June–1 July 2009; pp. 1142–1145. [Google Scholar]
- Gu, Y.; Wang, C. A Study of Hierarchical Correlation Clustering for Scientific Volume Data. In Advances in Visual Computing; Bebis, G., Ed.; ISVC 2010. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6455. [Google Scholar]
- Lorenz, R.; Bock, J.; Barker, A.J.; von Knobelsdorff-Brenkenhoff, F.; Wallis, W.; Korvink, J.G.; Bissell, M.M.; Schulz-Menger, J.; Markl, M. 4D Flow MRI in bicuspid aortic valve disease demonstrates altered distribution of aortic blood flow helicity. Magn. Reson. Med. 2014, 71, 1542–1553. [Google Scholar] [CrossRef] [Green Version]
- Fouras, A.; Soria, J. Accuracy of out-of-plane vorticity measurements derived from in-plane velocity field data. Exp. Fluids 1998, 25, 409–430. [Google Scholar] [CrossRef]
- Amorim, S.; Rodrigues, J.; Campelo, M.; Moura, B.; Martins, E.; Macedo, F.; Silva-Cardoso, J.; Júlia Maciel, M. Left ventricular reverse remodeling in dilated cardiomyopathy-maintained subclinical myocardial systolic and diastolic dysfunction. Int. J. Cardiovasc. Imaging 2017, 33, 605–613. [Google Scholar] [CrossRef]
- Friedberg, M.; Roche, S.; Mohammed, A.; Balasingam, M.; Atenafu, E.G.; Kantor, P.F. Left Ventricular Diastolic Mechanical Dyssynchrony and Associated Clinical Outcomes in Children With Dilated Cardiomyopathy. Circ. Cardiovasc. Imaging 2008, 1, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Dragulescu, A.; Mertens, L.; Friedberg, M. Interpretation of Left Ventricular Diastolic Dysfunction in Children With Cardiomyopathy by Echocardiography. Circ. Cardiovasc. Imaging 2013, 6, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, J.; Bolger, A.; Ebbers, T.; Carlhäll, C.-J. Four-dimensional blood flow-specific markers of LV dysfunction in dilated cardiomyopathy. Eur. Heart Cardiovasc. Imaging 2013, 14, 417–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoll, V.; Hess, A.; Rodgers, C.; Bissell, M.; Dyverfeldt, P.; Ebbers, T.; Myerson, S.G.; Carlhäll, C.-J.; Neubauer, S. Left Ventricular Flow Analysis: Novel Imaging Biomarkers and Predictors of Exercise Capacity in Heart Failure. Circ. Cardiovasc. Imaging 2019, 12, e008130. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, J.; Bolger, A.; Ebbers, T.; Carlhäll, C. Assessment of left ventricular hemodynamic forces in healthy subjects and patients with dilated cardiomyopathy using 4D Flow MRI. Physiol. Rep. 2016, 4, e12685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foell, D.; Jung, B.A.; Germann, E.; Staehle, F.; Bode, C.; Henning, J.; Markl, M. Segmental Myocardial Velocities in Dilated Cardiomyopathy with and without Left Bundle Branch Block. J. Magn. Reson. Imaging 2013, 37, 119–126. [Google Scholar] [CrossRef] [PubMed]
DCM Group | ||||||
---|---|---|---|---|---|---|
HV | DCM | p-Value | LVEF ≥ 50 (Complete-Responders) | LVEF < 50 (Non-Responders) | p-Value | |
N | 12 | 13 | 5 | 8 | ||
Age (years) | 39 (27,55) | 51 (29,62) | 0.060 | 40 (29,62) | 53 (44,58) | 0.502 |
Gender (female:male) | 5:7 | 6:7 | 0.821 | 3:2 | 3:5 | 0.429 |
Weight (kg) | 68 (50,111) | 83 (43,116) | 0.213 | 90 (72,116) | 72.5 (43,95) | 0.071 |
Height (cm) | 173 (163,188) | 168 (155,178) | 0.203 | 168 (163,178) | 166.5 (155,175) | 0.454 |
HR (bpm) | 64 (58,78) | 65 (56,101) | 0.743 | 65 (56,101) | 67.5 (57,89) | 0.698 |
EF (%) | 62.7 (54,69) | 46 (29,66) | <0.001 * | 55 (51,66) | 44 (29,48) | 0.002 * |
LVSV (mL) | 95.5 (66.3,122.9) | 62 (53,132.1) | 0.039 * | 61 (53,89) | 79 (55,132,1) | 0.183 |
CO (L/min) | 6.4 (4.8,7.9) | 6.1 (4.4,7.9) | 0.327 | 6.3 (5.2,7.9) | 5.9 (4.4,7.7) | 0.524 |
LVEDV (mL) | 153 (105.6,197.1) | 199 (125,364.2) | 0.015 * | 187 (151,201) | 219.5 (125,364.2) | 0.050 * |
LVESV (mL) | 51 (39,88) | 92 (37,232.1) | 0.004 * | 75 (37,92) | 125 (68,232.1) | 0.045 * |
DCM Group | p-Value | ||||
---|---|---|---|---|---|
HV | Complete-Responders | Non-Responders | HV vs. Complete-Responders | HV vs. Non-Responders | |
Peak-systole | |||||
Velocity (m/s) | 0.140 ± 0.014 | 0.099 ± 0.007 | 0.096 ± 0.008 | <0.001 * | <0.001 + |
Kinetic Energy (µJ) | 43.722 ± 4.592 | 29.335 ± 1.917 | 31.288 ± 2.044 | <0.001 * | <0.001 + |
Vorticity (1/s) | 20.306 ± 2.075 | 12.934 ± 0.814 | 13.331 ± 1.251 | <0.001 * | <0.001 + |
Helicity Density (m/s2) | −0.042 ± 0.004 | 0.036 ± 0.161 | −0.077 ± 0.139 | 0.125 | 0.417 |
Viscous Dissipation (1/s2) | 970.840 ± 412.093 | 412.093 ± 61.107 | 421.080 ± 54.870 | <0.001 * | <0.001 + |
Energy Loss (ηW) | 173.080 ± 39.387 | 35.284 ± 14.144 | 47.734 ± 12.935 | <0.001 * | <0.001 + |
E-wave | |||||
Velocity (m/s) | 0.187 ± 0.059 | 0.097 ± 0.004 | 0.099 ± 0.014 | 0.007 * | <0.001 + |
Kinetic Energy (µJ) | 5.567 ± 1.810 | 3.008 ± 0.074 | 3.005 ± 0.423 | 0.007 * | <0.001 + |
Vorticity (1/s) | 26.309 ± 7.895 | 14.633 ± 0.755 | 14.931 ± 1.963 | 0.005 * | <0.001 + |
Helicity Density (m/s2) | 0.106 ± 0.441 | 0.077 ± 0.065 | 0.056 ± 0.119 | 0.907 | 0.785 |
Viscous Dissipation (1/s2) | 1208.091 ± 574.696 | 393.994 ± 26.632 | 370.314 ± 80.785 | 0.007 * | <0.001 + |
Energy Loss (ηW) | 217.440 ± 126.751 | 28.408 ± 6.340 | 24.329 ± 11.540 | 0.005 * | <0.001 + |
End-Diastole | |||||
Velocity (m/s) | 0.075 ± 0.015 | 0.077 ± 0.005 | 0.073 ± 0.002 | 0.796 | 0.673 |
Kinetic Energy (µJ) | 2.291 ± 0.423 | 2.359 ± 0.165 | 2.266 ± 0.063 | 0.739 | 0.871 |
Vorticity (1/s) | 13.629 ± 2.255 | 12.444 ± 0.633 | 12.203 ± 0.552 | 0.273 | 0.099 |
Helicity Density (m/s2) | −0.025 ± 0.084 | −0.082 ± 0.064 | −0.027 ± 0.096 | 0.201 | 0.979 |
Viscous Dissipation (1/s2) | 300.577 ± 89.250 | 289.131 ± 54.300 | 256.496 ± 16.779 | 0.795 | 0.188 |
Energy Loss (ηW) | 11.162 ± 7.191 | 10.459 ± 7.757 | 8.875 ± 1.896 | 0.859 | 0.395 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco, P.; Sotelo, J.; Montalba, C.; Ruijsink, B.; Kerfoot, E.; Nordsletten, D.; Mura, J.; Hurtado, D.; Uribe, S. Comprehensive Assessment of Left Intraventricular Hemodynamics Using a Finite Element Method: An Application to Dilated Cardiomyopathy Patients. Appl. Sci. 2021, 11, 11165. https://doi.org/10.3390/app112311165
Franco P, Sotelo J, Montalba C, Ruijsink B, Kerfoot E, Nordsletten D, Mura J, Hurtado D, Uribe S. Comprehensive Assessment of Left Intraventricular Hemodynamics Using a Finite Element Method: An Application to Dilated Cardiomyopathy Patients. Applied Sciences. 2021; 11(23):11165. https://doi.org/10.3390/app112311165
Chicago/Turabian StyleFranco, Pamela, Julio Sotelo, Cristian Montalba, Bram Ruijsink, Eric Kerfoot, David Nordsletten, Joaquín Mura, Daniel Hurtado, and Sergio Uribe. 2021. "Comprehensive Assessment of Left Intraventricular Hemodynamics Using a Finite Element Method: An Application to Dilated Cardiomyopathy Patients" Applied Sciences 11, no. 23: 11165. https://doi.org/10.3390/app112311165
APA StyleFranco, P., Sotelo, J., Montalba, C., Ruijsink, B., Kerfoot, E., Nordsletten, D., Mura, J., Hurtado, D., & Uribe, S. (2021). Comprehensive Assessment of Left Intraventricular Hemodynamics Using a Finite Element Method: An Application to Dilated Cardiomyopathy Patients. Applied Sciences, 11(23), 11165. https://doi.org/10.3390/app112311165