Experimental Study on the Temporal and Morphological Characteristics of Dynamic Tensile Fractures in Igneous Rocks
Abstract
:1. Introduction
2. Experimental System and Principle
2.1. Experimental System
2.2. Principles of the Dynamic Brazilian Test under SHPB Loading
3. Incubation Time Criterion
4. Results and Analysis
4.1. Experimental Data
4.2. Rate-Dependent Effect of Dynamic Tensile Strength
4.3. Full-Field Strain Measurement of Typical Specimens by DIC
4.4. Characterizing the Fragmentized Process of Typical Specimens
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Q.B.; Zhao, J. A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech. Rock Eng. 2014, 47, 1411–1478. [Google Scholar] [CrossRef] [Green Version]
- Wong, L.N.Y.; Zou, C.; Cheng, Y. Fracturing and failure behavior of carrara marble in quasistatic and dynamic brazilian disc tests. Rock Mech. Rock Eng. 2014, 47, 1117–1133. [Google Scholar] [CrossRef]
- Xia, K.; Yao, W. Dynamic rock tests using split Hopkinson (Kolsky) bar system—A review. J. Rock Mech. Geotech. Eng. 2015, 7, 27–59. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.Z.; Li, W.; Song, X.L. A Method for Testing Dynamic Tensile Strength and Elastic Modulus of Rock Materials Using SHPB. Pure Appl. Geophys. 2006, 163, 1091–1100. [Google Scholar] [CrossRef]
- Zhao, J.; Li, H.B. Experimental determination of dynamic tensile properties of a granite. Int. J. Rock Mech. Min. Sci. 2000, 37, 861–866. [Google Scholar] [CrossRef]
- Li, D.; Li, B.; Han, Z.; Zhu, Q. Evaluation on Rock Tensile Failure of the Brazilian Discs under Different Loading Configurations by Digital Image Correlation. Appl. Sci. 2020, 10, 5513. [Google Scholar] [CrossRef]
- Zhu, W.C.; Niu, L.L.; Li, S.H.; Xu, Z.H. Dynamic Brazilian Test of Rock Under Intermediate Strain Rate: Pendulum Hammer-Driven SHPB Test and Numerical Simulation. Rock Mech. Rock Eng. 2015, 48, 1867–1881. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, X.; Zou, Y.; Jiang, Y.; Li, G. Dynamic Brazilian tests of granite under coupled static and dynamic loads. Rock Mech. Rock Eng. 2014, 47, 495–505. [Google Scholar] [CrossRef]
- Heard, W.; Song, B.; Williams, B.; Martin, B.; Sparks, P.; Nie, X. Dynamic Tensile Experimental Techniques for Geomaterials: A Comprehensive Review. J. Dyn. Behav. Mater. 2018, 4, 74–94. [Google Scholar] [CrossRef]
- Dai, F.; Huang, S.; Xia, K.; Tan, Z. Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech. Rock Eng. 2010, 43, 657–666. [Google Scholar] [CrossRef]
- Zhou, Y.X.; Xia, K.; Li, X.B.; Li, H.B.; Ma, G.W.; Zhao, J.; Zhou, Z.L.; Dai, F. Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int. J. Rock Mech. Min. Sci. 2012, 49, 105–112. [Google Scholar] [CrossRef]
- Qian, Q.; Qi, C.; Wang, M. Dynamic strength of rocks and physical nature of rock strength. J. Rock Mech. Geotech. Eng. 2009, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kalthoff, J.F.; Shockey, D.A. Instability of cracks under impulse loads. J. Appl. Phys. 1977, 48, 986–993. [Google Scholar] [CrossRef]
- Homma, H.; Shockey, D.A.; Murayama, Y. Response of cracks in structural materials to short pulse loads. J. Mech. Phys. Solids 1983, 31, 261–279. [Google Scholar] [CrossRef]
- Shockey, D.A.; Kalthoff, J.F.; Erlich, D.C. Evaluation of dynamic crack instability criteria. Int. J. Fract. 1983, 22, 217–229. [Google Scholar] [CrossRef]
- Petrov, Y.V.; Utkin, A.A. Dependence of the dynamic strength on loading rate. Sov. Mater. Sci. 1989, 25, 153–156. [Google Scholar] [CrossRef]
- Bragov, A.M.; Petrov, Y.V.; Karihaloo, B.L.; Konstantinov, A.Y.; Lamzin, D.A.; Lomunov, A.K.; Smirnov, I.V. Dynamic strengths and toughness of an ultra high performance fibre reinforced concrete. Eng. Fract. Mech. 2013, 110, 477–488. [Google Scholar] [CrossRef]
- Martemyanov, A.; Selyutina, N.S.; Katorina, A. Incubation time criterion analysis of rock materials under dynamic loadings. Procedia Struct. Integr. 2017, 6, 336–343. [Google Scholar] [CrossRef]
- Martemyanov, A.N.; Petrov, Y.V. Understanding of Rock Material Behavior under Dynamic Loadings Based on Incubation Time Criteria Approach BT-Physical and Mathematical Modeling of Earth and Environment Processes; Karev, V., Klimov, D., Pokazeev, K., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 233–248. [Google Scholar]
- Petrov, Y.V.; Smirnov, I.V.; Volkov, G.A.; Abramian, A.K.; Bragov, A.M.; Verichev, S.N. Dynamic failure of dry and fully saturated limestone samples based on incubation time concept. J. Rock Mech. Geotech. Eng. 2017, 9, 125–134. [Google Scholar] [CrossRef]
- Smirnov, I.; Konstantinov, A. Strain Rate Dependencies and Competitive Effects of Dynamic Strength of Some Engineering Materials. Appl. Sci. 2020, 10, 3293. [Google Scholar] [CrossRef]
- Chen, F.; Wang, E.; Zhang, B.; Zhang, L.; Meng, F. Prediction of Fracture Damage of Sandstone Using Digital Image Correlation. Appl. Sci. 2020, 10, 1280. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.B.; Zhao, J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads. Int. J. Rock Mech. Min. Sci. 2013, 60, 423–439. [Google Scholar] [CrossRef]
- Zhang, F.; Yan, G.; Yang, Q.; Gao, J.; Li, Y. Strain Field Evolution Characteristics of Free Surface during Crater Blasting in Sandstone under High Stress. Appl. Sci. 2020, 10, 6285. [Google Scholar] [CrossRef]
- Fourmeau, M.; Gomon, D.; Vacher, R.; Hokka, M.; Kane, A.; Kuokkala, V.-T. Application of DIC Technique for Studies of Kuru Granite Rock under Static and Dynamic Loading. Procedia Mater. Sci. 2014, 3, 691–697. [Google Scholar] [CrossRef] [Green Version]
- Gao, G.; Huang, S.; Xia, K.; Li, Z. Application of Digital Image Correlation (DIC) in Dynamic Notched Semi-Circular Bend (NSCB) Tests. Exp. Mech. 2015, 55, 95–104. [Google Scholar] [CrossRef]
- Xing, H.Z.; Zhang, Q.B.; Ruan, D.; Dehkhoda, S.; Lu, G.X.; Zhao, J. Full-field measurement and fracture characterisations of rocks under dynamic loads using high-speed three-dimensional digital image correlation. Int. J. Impact Eng. 2018, 113, 61–72. [Google Scholar] [CrossRef]
- Xing, H.Z.; Zhang, Q.B.; Braithwaite, C.H.; Pan, B.; Zhao, J. High-Speed Photography and Digital Optical Measurement Techniques for Geomaterials: Fundamentals and Applications; Springer: Vienna, Austria, 2017; Volume 50, ISBN 0060301611640. [Google Scholar]
- Healy, D.; Rizzo, R.E.; Cornwell, D.G.; Farrell, N.J.C.; Watkins, H.; Timms, N.E.; Gomez-Rivas, E.; Smith, M. FracPaQ: A MATLABTM toolbox for the quantification of fracture patterns. J. Struct. Geol. 2017, 95, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Duda, R.O.; Hart, P.E. Use of the Hough Transform to Detect Lines and Curves in Pictures. CACM 1972, 15, 11–15. [Google Scholar] [CrossRef]
- Ballard, D.H. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 1981, 13, 111–122. [Google Scholar] [CrossRef] [Green Version]
- ISRM. ISRM Suggested methods for determining tensile strength of rock materials. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1978, 15, 99–103. [Google Scholar] [CrossRef]
- Dai, F.; Xia, K. Loading Rate Dependence of Tensile Strength Anisotropy of Barre Granite. Pure Appl. Geophys. 2010, 167, 1419–1432. [Google Scholar] [CrossRef]
- Kolsky, H. An Investigation of the Mechanical Properties of Materials at very High Rates of Loading. Proc. Phys. Soc. Sect. B 1949, 62, 676–700. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Q.B.; Zhao, J. Dynamic increase factors of rock strength. In Proceedings of the International Conference on Rock Dynamics and Applications (RocDyn), Trondheim, Norway, 26–27 June 2018; CRC Press: Boca Raton, FL, USA, 2018; pp. 169–174. [Google Scholar]
- Petrov, Y.V.; Morozov, N.F. On the Modeling of Fracture of Brittle Solids. J. Appl. Mech. 1994, 61, 710–712. [Google Scholar] [CrossRef]
- Dalmas, D.; Guerra, C.; Scheibert, J.; Bonamy, D. Damage mechanisms in the dynamic fracture of nominally brittle polymers. Int. J. Fract. 2013, 184, 93–111. [Google Scholar] [CrossRef] [Green Version]
- Li, X.F.; Li, X.; Li, H.B.; Zhang, Q.B.; Zhao, J. Dynamic tensile behaviours of heterogeneous rocks: The grain scale fracturing characteristics on strength and fragmentation. Int. J. Impact Eng. 2018, 118, 98–118. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Kou, S.Q.; Yu, J.; Yu, Y.; Jiang, L.G.; Lindqvist, P.-A. Effects of loading rate on rock fracture. Int. J. Rock Mech. Min. Sci. 1999, 36, 597–611. [Google Scholar] [CrossRef]
- Li, D.; Wong, L.N.Y. The Brazilian disc test for rock mechanics applications: Review and new insights. Rock Mech. Rock Eng. 2013, 46, 269–287. [Google Scholar] [CrossRef]
Specimen | Time (μs) | y0 | xc | w | A | R2 |
---|---|---|---|---|---|---|
Breccia | 150 200 250 300 350 400 | 4.52 3.82 5.86 5.10 4.94 7.11 | 90.23 86.67 89.32 89.50 89.59 88.82 | 4.25 8.61 4.16 5.67 6.16 6.35 | 18.24 16.16 32.22 33.97 36.89 37.46 | 0.930 0.900 0.919 0.970 0.973 0.963 |
Andesite | 280 330 380 430 480 530 | 6.42 6.37 7.22 9.57 9.84 11.22 | 88.56 88.16 88.86 88.22 88.01 88.21 | 4.14 3.87 4.72 5.20 5.90 6.21 | 28.98 37.60 37.11 34.99 33.07 32.34 | 0.931 0.963 0.961 0.943 0.936 0.959 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Chi, L.-Y.; Yang, J.; Yu, Q. Experimental Study on the Temporal and Morphological Characteristics of Dynamic Tensile Fractures in Igneous Rocks. Appl. Sci. 2021, 11, 11230. https://doi.org/10.3390/app112311230
Xu X, Chi L-Y, Yang J, Yu Q. Experimental Study on the Temporal and Morphological Characteristics of Dynamic Tensile Fractures in Igneous Rocks. Applied Sciences. 2021; 11(23):11230. https://doi.org/10.3390/app112311230
Chicago/Turabian StyleXu, Xuan, Li-Yuan Chi, Jun Yang, and Qi Yu. 2021. "Experimental Study on the Temporal and Morphological Characteristics of Dynamic Tensile Fractures in Igneous Rocks" Applied Sciences 11, no. 23: 11230. https://doi.org/10.3390/app112311230
APA StyleXu, X., Chi, L. -Y., Yang, J., & Yu, Q. (2021). Experimental Study on the Temporal and Morphological Characteristics of Dynamic Tensile Fractures in Igneous Rocks. Applied Sciences, 11(23), 11230. https://doi.org/10.3390/app112311230