A Numerical Study of the Wind Speed Effect on the Flow and Acoustic Characteristics of the Minor Cavity Structures in a Two-Wheel Landing Gear
Abstract
:1. Introduction
2. Setup of Landing Gear Experiment
2.1. FL-17 5.5 m × 4 m Aeroacoustic Wind Tunnel
2.2. Landing Gear Model
2.3. Acoustic Measurement Arrangement
3. The Setup of the Simulation
3.1. Computional Domain
3.2. Governing Equation
3.3. Meshing
3.4. Simulations Parameters
3.5. Verification of Calculation Method
3.5.1. Surface Pressure Coefficient
3.5.2. Far Field Noise
4. Results and Discussion
4.1. Verification of Landing Gear Calculation Model
4.2. Flow Characteristics of Brake System and Torque Link
4.2.1. Analysis of Flow Characteristics of Brake System
4.2.2. Analysis of Flow Characteristics of Torque Link
4.3. Far Field Noise Radiation
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobrzynski, W. Almost 40 Years of Airframe Noise Research: What Did We Achieve? J. Aircr. 2010, 47, 353–367. [Google Scholar] [CrossRef]
- Dobrzynski, W.; Chow, L.C.; Smith, M.; Boillot, A.; Dereure, O.; Molin, N. Experimental Assessment of Low Noise Landing Gear Component Design. Int. J. Aeroacoustics 2010, 9, 763–786. [Google Scholar] [CrossRef] [Green Version]
- Dobrzynski, W.; Chow, L.; Guion, P.; Shiells, D. A European Study on Landing Gear Airframe Noise Sources. In Proceedings of the 6th Aeroacoustics Conference and Exhibit, Lahaina, HI, USA, 12–14 June 2000. [Google Scholar]
- Dobrzynski, W.M.; Schöning, B.; Chow, L.C.; Wood, C.; Smith, M.; Seror, C. Design and Testing of Low Noise Landing Gears. Int. J. Aeroacoustics 2006, 5, 233–262. [Google Scholar] [CrossRef]
- Dobrzynski, W.; Ewert, R.; Pott-Pollenske, M.; Herr, M.; Delfs, J. Research at DLR towards Airframe Noise Prediction and Reduction. Aerosp. Sci. Technol. 2008, 12, 80–90. [Google Scholar] [CrossRef]
- Dobrzynski, W.; Buchholz, H.; Dobrzynski, W.; Buchholz, H. Full-Scale Noise Testing on Airbus Landing Gears in the German Dutch Wind Tunnel. In Proceedings of the 3rd AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, USA, 12–14 May 1997. [Google Scholar]
- Manoha, E.; Bulté, J.; Caruelle, B. Lagoon: An Experimental Database for the Validation of CFD/CAA Methods for Landing Gear Noise Prediction. In Proceedings of the 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference), Vancouver, BC, Canada, 5–7 May 2008. [Google Scholar]
- Dobrzynski, W.; Chow, L.; Guion, P.; Shiells, D. Research into Landing Gear Airframe Noise Reduction. In Proceedings of the 8th AIAA/CEAS Aeroacoustics Conference & Exhibit, Breckenridge, CO, USA, 17–19 June 2002. [Google Scholar]
- Guo, Y.P.; Yamamoto, K.J.; Stoker, R.W. Experimental Study on Aircraft Landing Gear Noise. J. Aircr. 2006, 43, 306–317. [Google Scholar] [CrossRef]
- Zhao, K.; Zhang, R.; Cao, Q.; Kopiev, V.; Belyaev, I. Experimental Investigation of the Four-Wheel Landing Gear Noise in Large-Scale Configurations. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings; Elsevier: Amsterdam, The Netherlands, 2020; Volume 261, pp. 945–954. [Google Scholar]
- Kopiev, V.; Belyaev, I.; Zaytsev, M.; Zhao, K. Experimental Study of Truncated-Cylinder Struts for Noise Reduction of Large-Scale Landing Gears. J. Sound Vib. 2021, 511, 116362. [Google Scholar] [CrossRef]
- Liang, Y.; Zhao, K.; Chen, Y.; Zhang, L.; Bennett, G.J. An Experimental Characterization on the Acoustic Performance of Forward/Rearward Retraction of a Nose Landing Gear. Int. J. Aerosp. Eng. 2019, 2019, 1–11. [Google Scholar] [CrossRef]
- Murayama, M.; Yokokawa, Y.; Yamamoto, K.; Hirai, T. Computational Study of Low-Noise Fairings around Tire-Axle Region of a Two-Wheel Main Landing Gear. Comput. Fluids 2013, 85, 114–124. [Google Scholar] [CrossRef]
- Zhao, K.; Liang, Y.; Okolo, P.N.; Wang, Y.; Wu, Z.; Bennett, G.J. Suppression of Aerodynamic Noise Using Dual-Jet Air Curtains Combined with Perforated Fairings. Appl. Acoust. 2020, 158, 107042. [Google Scholar] [CrossRef]
- Zhao, K.; Alimohammadi, S.; Okolo, P.N.; Kennedy, J.; Bennett, G.J. Aerodynamic Noise Reduction Using Dual-Jet Planar Air Curtains. J. Sound Vib. 2018, 432, 192–212. [Google Scholar] [CrossRef]
- Terracol, M.; Manoha, E. Numerical Wire Mesh Model for the Simulation of Noise-Reduction Devices. AIAA J. 2021, 59, 987–1007. [Google Scholar] [CrossRef]
- Zhao, K.; Okolo, P.; Neri, E.; Chen, P.; Kennedy, J.; Bennett, G.J. Noise Reduction Technologies for Aircraft Landing Gear-A Bibliographic Review. Prog. Aerosp. Sci. 2020, 112, 100589. [Google Scholar] [CrossRef]
- Lockard, D. Summary of the Tandem Cylinder Solutions from the Benchmark Problems for Airframe Noise Computations-I Workshop. In Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2011. [Google Scholar]
- Greschner, B.; Eschricht, D.; Mockett, C.; Thiele, F. Turbulence Modelling Effects on Tandem Cylinder Interaction Flow and Analysis of Installation Effects on Broadband Noise Using Chimera Technique. In Proceedings of the 30th AIAA Applied Aerodynamics Conference, New Orleans, LA, USA, 25–28 June 2012. [Google Scholar]
- Lockard, D.; Khorrami, M.; Choudhari, M.; Hutcheson, F.; Brooks, T.; Stead, D. 2007-3450 Tandem Cylinder Noise Predictions. In Proceedings of the 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference), Rome, Italy, 21–23 May 2007. [Google Scholar] [CrossRef] [Green Version]
- Hutcheson, F.V.; Brooks, T.F. Noise Radiation from Single and Multiple Rod Configurations. Int. J. Aeroacoustics 2012, 11, 291–333. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, L.; Neuhart, D.; McGinley, C.; Khorrami, M.; Choudhari, M. Measurements of Unsteady Wake Interference Between Tandem Cylinders. In Proceedings of the 36th AIAA Fluid Dynamics Conference and Exhibit, San Francisco, CA, USA, 5–8 June 2006. [Google Scholar]
- Dawi, A.H.; Akkermans, R.A.D. Direct and Integral Noise Computation of Two Square Cylinders in Tandem Arrangement. J. Sound Vib. 2018, 436, 138–154. [Google Scholar] [CrossRef]
- Ewert, R.; Dierke, J.; Neifeld, A.; Appel, C.; Siefert, M.; Kornow, O. CAA Broadband Noise Prediction for Aeroacoustic Design. Procedia Eng. 2010, 6, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Long, S.L.; Nie, H.; Xu, X. Aeroacoustic Study on a Simplified Nose Landing Gear. AMM Appl. Mech. Mater. 2012, 184–185, 18–23. [Google Scholar] [CrossRef]
- Fortin, F.; Syms, J.; Clark, C.; McIlwain, S. CFD Investigation of Noise around a Landing Gear. In Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), Colorado Springs, CO, USA, 4–6 June 2012. [Google Scholar]
- Rodarte Ricciardi, T.; Azevedo, P.; Wolf, W.; Speth, R. Noise Prediction of the LAGOON Landing Gear Using Detached Eddy Simulation and Acoustic Analogy. In Proceedings of the 23rd AIAA/CEAS Aeroacoustics Conference, Denver, CO, USA, 5–9 June 2017. [Google Scholar]
- Mason, P.J. Large-Eddy Simulation: A Critical Review of the Technique. Q. J. Royal Met. Soc. 1994, 120, 1–26. [Google Scholar] [CrossRef]
- Vilela de Abreu, R.; Jansson, N.; Hoffman, J. Computation of Aeroacoustic Sources for a Gulfstream G550 Nose Landing Gear Model Using Adaptive FEM. Comput. Fluids 2016, 124, 136–146. [Google Scholar] [CrossRef]
- Giret, J.-C.; Sengissen, A.; Moreau, S.; Jouhaud, J.-C. Prediction of LAGOON Landing-Gear Noise Using an Unstructured LES Solver. In Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference, Berlin, Germany, 27–29 May 2013. [Google Scholar]
- Sanders, L.; Manoha, E.; Ben Khelil, S.; Francois, C. LAGOON: CFD/CAA Coupling for Landing Gear Noise and Comparison with Experimental Database. In Proceedings of the 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference), Portland, OR, USA, 5–8 June 2011. [Google Scholar]
- Redonnet, S.; Ben Khelil, S.; Bulté, J.; Cunha, G. Numerical Characterization of Landing Gear Aeroacoustics Using Advanced Simulation and Analysis Techniques. J. Sound Vib. 2017, 403, 214–233. [Google Scholar] [CrossRef] [Green Version]
- Imamura, T.; Hirai, T.; Amemiya, K.; Yokokawa, Y.; Enomoto, S.; Yamamoto, K. Aerodynamic and Aeroacoustic Simulations of a Two-Wheel Landing Gear. Procedia Eng. 2010, 6, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Krajnović, S.; Lárusson, R.; Basara, B. Superiority of PANS Compared to LES in Predicting a Rudimentary Landing Gear Flow with Affordable Meshes. Int. J. Heat Fluid Flow 2012, 37, 109–122. [Google Scholar] [CrossRef]
- Ribeiro, A.F.; Casalino, D.; Fares, E.; Noelting, S.E. CFD/CAA Analysis of the LAGOON Landing Gear Configuration. In Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference, Berlin, Germany, 27–29 May 2013. [Google Scholar]
- Bauer, M.; Dierke, J.; Ewert, R. Application of a Discontinuous Galerkin Method to Discretize Acoustic Perturbation Equations. AIAA J. 2011, 49, 898–908. [Google Scholar] [CrossRef]
- Bissuel, A.; Allaire, G.; Daumas, L.; Barré, S.; Rey, F. Linearized Navier–Stokes Equations for Aeroacoustics Using Stabilized Finite Elements: Boundary Conditions and Industrial Application to Aft-Fan Noise Propagation. Comput. Fluids 2018, 166, 32–45. [Google Scholar] [CrossRef] [Green Version]
- Bailly, C.; Juvé, D. Numerical Solution of Acoustic Propagation Problems Using Linearized Euler Equations. AIAA J. 2000, 38, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Ewert, R.; Delfs, J.W.; Lummer, M. The Simulation of Airframe Noise Applying Euler-Perturbation and Acoustic Analogy Approaches. Int. J. Aeroacoustics 2005, 4, 69–91. [Google Scholar] [CrossRef]
- Billson, M.; Eriksson, L.-E.; Davidson, L. Acoustic Source Terms for the Linearized Euler Equations in Conservative Form. AIAA J. 2005, 43, 752–759. [Google Scholar] [CrossRef]
- Allen, A.; Breitsamter, C. Landing Gear Influence on the Wake Vortex of a Large Transport Aircraft. J. Aircr. 2008, 45, 1367–1372. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Li, S.; Li, D.; Jia, Y. Numerical Simulation and Experimental Research on Aerodynamic Noises of the Single Wheel Landing Gear in an Aircraft. J. Vibroeng. 2017, 19, 3926–3938. [Google Scholar] [CrossRef]
- Wang, M.; Angland, D.; Zhang, X. The Noise Generated by a Landing Gear Wheel with Hub and Rim Cavities. J. Sound Vib. 2017, 392, 127–141. [Google Scholar] [CrossRef] [Green Version]
Experimental Equipment | Device Model | Performance Parameter |
---|---|---|
Acoustic wind tunnel | 5.5 m × 4 m | (1) Driven by an impeller with a power of 12.5 MW; (2) Wind speed range: 0~100 m·s−1; (3) The turbulence in the center of the opening section of the wind tunnel nozzle is 0.05%; (4) The background noise is 75.6 dB (A) |
Far-field microphone | G.R.A.S 46AE | (1) Frequency range: 3.15 Hz~20 kHz; (2) Sound pressure dynamic response: 14 dBA re.20 μPa~135 dB re.20 μPa; (3) Sensitivity: 50 mV/Pa, 250 Hz |
Array microphone | 135 G.R.A.S 40PH | (1) Frequency range: 100 Hz~20 kHz; (2) Dynamic response of sound pressure: 32~135 dB (A); (3) Sensitivity: 50 mV/Pa, 250 Hz |
data collection systems | NI PXle-4499 | Sampling frequency 51.2 kHz |
Velocity | Experiment (15#/13#) | Simulation (15#/13#) | Difference/% (15#/13#) | |
---|---|---|---|---|
OASPL/dB | 34 m·s−1 | 78.7/75.8 | 79.1/79.06 | 0.5%/4.3% |
55 m·s−1 | 92.5/88.7 | 92.9/92.6 | 0.4%/4.4% | |
75 m·s−1 | 101.4/96.9 | 100.1/99.4 | 1.2%/2.6% |
fa/Hz (34 m·s−1) | fb/Hz (55 m·s−1) | fc/Hz (75 m·s−1) | |
---|---|---|---|
Ta | 699 | 949 | 1109 |
Tb | 490 | 478/823 | 1109 |
Tc | 500 | 829 | 1113 |
Velocity | Tire | Shock Strut | Torque Link | Brake | |
---|---|---|---|---|---|
OASPL/dB | 34 m·s−1 | 92.7 | 98.8 | 85.8 | 74.5/73.9 |
55 m·s−1 | 104.6 | 110.9 | 98.6 | 90/91.1 | |
75 m·s−1 | 111.6 | 119.3 | 102.9 | 98.7/96.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Zhao, K.; Liang, J.; Kopiev, V.; Belyaev, I.; Zhang, T. A Numerical Study of the Wind Speed Effect on the Flow and Acoustic Characteristics of the Minor Cavity Structures in a Two-Wheel Landing Gear . Appl. Sci. 2021, 11, 11235. https://doi.org/10.3390/app112311235
Huang L, Zhao K, Liang J, Kopiev V, Belyaev I, Zhang T. A Numerical Study of the Wind Speed Effect on the Flow and Acoustic Characteristics of the Minor Cavity Structures in a Two-Wheel Landing Gear . Applied Sciences. 2021; 11(23):11235. https://doi.org/10.3390/app112311235
Chicago/Turabian StyleHuang, Longlong, Kun Zhao, Junbiao Liang, Victor Kopiev, Ivan Belyaev, and Tian Zhang. 2021. "A Numerical Study of the Wind Speed Effect on the Flow and Acoustic Characteristics of the Minor Cavity Structures in a Two-Wheel Landing Gear " Applied Sciences 11, no. 23: 11235. https://doi.org/10.3390/app112311235
APA StyleHuang, L., Zhao, K., Liang, J., Kopiev, V., Belyaev, I., & Zhang, T. (2021). A Numerical Study of the Wind Speed Effect on the Flow and Acoustic Characteristics of the Minor Cavity Structures in a Two-Wheel Landing Gear . Applied Sciences, 11(23), 11235. https://doi.org/10.3390/app112311235