Object Localization and Tracking System Using Multiple Ultrasonic Sensors with Newton–Raphson Optimization and Kalman Filtering Techniques
Abstract
:1. Introduction
2. Mathematical Formulation of Object Localization and Tracking Algorithms
2.1. VAD Algorithm
2.2. Envelope Extraction by Demodulation Algorithm
2.3. TOF Estimation
2.3.1. The Envelope Model of Ultrasonic Echo Signal
2.3.2. NRLM Algorithm for TOF Estimation
2.3.3. Determination of Suitable Fitting Window
- (1)
- Set the maximum amplitude detected for the first time as the initial value , and find the corresponding by the two-maximums algorithm.
- (2)
- In the ith iteration, check if the waveform from to is a monotonic decrease. If it is a monotonic decrease, then go to step 3.
- (3)
2.4. Object Localization and Tracking Algorithm
2.4.1. NRLM Algorithm for Object Localization
2.4.2. EKF Algorithm for Object Localization and Tracking
3. Theoretical Comparison of TOF Estimation with Simulation
4. Experiment Results
- Case 1:
- The localization target is a stationary marker pen that stands vertically on the platform at measured coordinates. This testing object is stationary and has a smooth surface.
- Case 2:
- The localization target is one human index finger stationary pointing vertically to the platform at measured coordinates. This testing object is stationary and has an uneven surface.
- Case 3:
- The system will track one moving human finger with different trajectories, and the index finger is pointing vertically to the platform. This testing object is moving and has an uneven surface.
4.1. The Performance of TOF Estimation
4.2. The Performance of Object Localization and Tracking
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, L.; Wang, X.; Hou, Z.; Du, Z.; Zeng, Y.; Mu, Z. Path Planning Optimization for Driverless Vehicle in Parallel Parking Integrating Radial Basis Function Neural Network. Appl. Sci. 2021, 11, 8178. [Google Scholar] [CrossRef]
- Ji, H.; Cui, X.; Gao, Y.; Ge, X. 3-D Ultrasonic Localization of Transformer Patrol Robot Based on EMD and PHAT-β1 Algorithms. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar]
- Zeng, Q.; Kuang, Z.; Wu, S.; Yang, J. A Method of Ultrasonic Finger Gesture Recognition Based on the Micro-Doppler Effect. Appl. Sci. 2019, 9, 2314. [Google Scholar] [CrossRef] [Green Version]
- Mozumi, M.; Hasegawa, H. Adaptive Beamformer Combined with Phase Coherence Weighting Applied to Ultrafast Ultrasound. Appl. Sci. 2018, 8, 204. [Google Scholar] [CrossRef] [Green Version]
- Kaltsoukalas, K.; Makris, S.; Chryssolouris, G. On generating the motion of industrial robot manipulators. Robot.-Comput.-Integr. Manuf. 2015, 32, 65–71. [Google Scholar] [CrossRef]
- Choi, H.; Seong, W.; Yang, H. Source Type Classification and Localization of Inter-Floor Noise with a Single Sensor and Knowledge Transfer between Reinforced Concrete Buildings. Appl. Sci. 2021, 11, 5399. [Google Scholar] [CrossRef]
- Zhuo, D.-B.; Cao, H. Fast Sound Source Localization Based on SRP-PHAT Using Density Peaks Clustering. Appl. Sci. 2021, 11, 445. [Google Scholar] [CrossRef]
- Chen, H.; Ballal, T.; Muqaibel, A.H.; Zhang, X.; Al-Naffouri, T.Y. Air Writing via Receiver Array-Based Ultrasonic Source Localization. IEEE Trans. Instrum. Meas. 2020, 69, 8088–8101. [Google Scholar] [CrossRef]
- Kim, K.; Wang, S.; Ryu, H.; Lee, S.Q. Acoustic-Based Position Estimation of an Object and a Person Using Active Localization and Sound Field Analysis. Appl. Sci. 2020, 10, 9090. [Google Scholar] [CrossRef]
- Kishimoto, T.; Woo, H.; Komatsu, R.; Tamura, Y.; Tomita, H.; Shimazoe, K.; Yamashita, A.; Asama, H. Path Planning for Localization of Radiation Sources Based on Principal Component Analysis. Appl. Sci. 2021, 11, 4707. [Google Scholar] [CrossRef]
- Sabatini, A.M. A digital-signal-processing technique for ultrasonic signal modeling and classification. IEEE Trans. Instrum. Meas. 2001, 50, 15–21. [Google Scholar] [CrossRef]
- Vemuri, A.T. Using a fixed threshold in ultrasonic distance-ranging automotive applications. Analog. Appl. J. 2012, 3Q, 19–23. [Google Scholar]
- Yi, D.; Jin, H.; Kim, M.C.; Kim, S.C. An Ultrasonic Object Detection Applying the ID Based on Spread Spectrum Technique for a Vehicle. Sensors 2020, 20, 414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammad, A.; Hafez, A.; Elewa, M.T. A LabVIEW Based Experimental Platform for Ultrasonic Range Measurements. DSP J. 2007, 6, 1–8. [Google Scholar]
- Raya, R.; Frizera, A.; Ceres, R.; Calderón, L.; Rocon, E. Design and evaluation of a fast model-based algorithm for ultrasonic range measurements. Sens. Actuators Phys. 2008, 148, 335–341. [Google Scholar] [CrossRef]
- Weenk, D.; van Beijnum, B.J.F.; Droog, A.; Hermens, H.J.; Veltink, P.H. Ultrasonic range measurements on the human body. In Proceedings of the 2013 Seventh International Conference on Sensing Technology, Wellington, New Zealand, 3–5 December 2013. [Google Scholar]
- Barshan, B. Fast processing techniques for accurate ultrasonic range measurements. Meas. Sci. Technol. 2000, 11, 45–50. [Google Scholar] [CrossRef]
- Parrilla, M.; Anaya, J.; Fritsch, C. Digital signal processing techniques for high accuracy ultrasonic range measurements. IEEE Trans. Instrum. Meas. 1991, 40, 759–763. [Google Scholar] [CrossRef]
- Marioli, D.; Narduzzi, C.; Offelli, C.; Petri, D.; Sardini, E.; Taroni, A. Digital time-of-flight measurement for ultrasonic sensors. IEEE Trans. Instrum. Meas. 1992, 41, 9–97. [Google Scholar] [CrossRef]
- Queirós, R.; Alegria, F.C.; Girão, P.S.; Serra, A.C. Cross-correlation and sine-fitting techniques for high resolution ultrasonic ranging. IEEE Trans. Instrum. Meas. 2010, 59, 3227–3236. [Google Scholar] [CrossRef]
- Zheng, D.; Hou, H.; Zhang, T. Research and realization of ultrasonic gas flow rate measurement based on ultrasonic exponential model. Ultrasonics 2016, 67, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.; Sato, T. Localization in Wireless Sensor Networks: A Survey on Algorithms, Measurement Techniques, Applications and Challenges. J. Sens. Actuator Netw. 2017, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Zhang, S.; Huang, D. A TOA-Based Localization Algorithm With Simultaneous NLOS Mitigation and Synchronization Error Elimination. IEEE Sens. Lett. 2019, 3, 1–4. [Google Scholar] [CrossRef]
- Azmi, N.A.; Samsul, S.; Yamada, Y.; Yakub, M.F.M.; Ismail, M.I.M.; Dziyauddin, R.A. A Survey of Localization using RSSI and TDoA Techniques in Wireless Sensor Network: System Architecture. In Proceedings of the 2018 2nd International Conference on Telematics and Future Generation Networks (TAFGEN), Kuching, Malaysia, 24–26 July 2018; pp. 131–136. [Google Scholar]
- Hou, Y.; Yang, X.; Abbasi, Q. Efficient AoA-Based Wireless Indoor Localization for Hospital Outpatients Using Mobile Devices. Sensors 2018, 18, 3698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achroufene, A.; Amirat, Y.; Chibani, A. RSS-Based Indoor Localization Using Belief Function Theory. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1163–1180. [Google Scholar] [CrossRef]
- Beck, A.; Stoica, P.; Li, J. Exact and Approximate Solutions of Source Localization Problems. IEEE Trans. Signal Process. 2008, 56, 1770–1778. [Google Scholar] [CrossRef]
- Dag, T.; Arsan, T. Received signal strength based least squares lateration algorithm for indoor localization. Comput. Electr. Eng. 2018, 66, 114–126. [Google Scholar] [CrossRef]
- Qu, X.; Xie, L.; Tan, W. Iterative Constrained Weighted Least Squares Source Localization Using TDOA and FDOA Measurements. IEEE Trans. Signal Process. 2017, 65, 3990–4003. [Google Scholar] [CrossRef]
- Wu, P.; Su, S.; Zuo, Z.; Guo, X.; Sun, B.; Wen, X. Time Difference of Arrival (TDoA) Localization Combining Weighted Least Squares and Firefly Algorithm. Sensors 2019, 19, 2554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, T.; Wang, H.; Shen, X.; Jiang, Z.; He, K. Target localization based on structured total least squares with hybrid TDOA-AOA measurements. Signal Process. 2018, 143, 211–221. [Google Scholar] [CrossRef]
- Angrisani, L.; Baccigalupi, A.; Moriello, R.S.L. A measurement method based on Kalman filtering for ultrasonic time-of-flight estimation. IEEE Trans. Instrum. Meas. 2006, 55, 442–448. [Google Scholar] [CrossRef]
- Guo, G.; Wang, S.-X.; Zhao, X.-H.; Sun, X.-Y. Double exponential model of ultrasonic signals. In Proceedings of the 9th International Conference on Signal Processing(ICSP08), Beijing, China, 26–29 October 2008; pp. 2575–2578. [Google Scholar]
- Ting, J.-A.; Theodorou, E.; Schaal, S. A Kalman filter for robust outlier detection. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 1514–1519. [Google Scholar]
- Air Ultrasonic Ceramic Transducers 400PT160. Pro-Wave Electronic Corp. Available online: http://www.prowave.com.tw/english/products/ut/ep/40pt16.htm (accessed on 8 August 2021).
- Peremans, H.; Audenaert, K.; Campenhout, J.M.V. A high-resolution sensor based on tri-aural perception. IEEE Trans. Robot. Autom. 1993, 9, 36–48. [Google Scholar] [CrossRef]
Target Localization Method | LS | NRLM | EKF | |
---|---|---|---|---|
Target Coordinate | Axis | |||
(14, 37) | x | 0.56 | 0.52 | 0.51 |
y | 0.44 | 1.51 | 0.45 | |
(18, 37) | x | 0.26 | 0.20 | 0.21 |
y | 1.16 | 1.58 | 1.12 | |
(14, 41) | x | 0.09 | 0.07 | 0.10 |
y | 0.72 | 0.56 | 0.28 | |
(18, 41) | x | 0.24 | 0.23 | 0.22 |
y | 0.05 | 0.60 | 0.08 |
Target Localization Method | LS | NRLM | EKF | |
---|---|---|---|---|
Target Coordinate | Axis | |||
(14, 37) | x | 0.28 | 0.36 | 0.28 |
y | 1.31 | 0.97 | 0.89 | |
(18, 37) | x | 0.30 | 0.30 | 0.27 |
y | 0.35 | 0.94 | 0.45 | |
(14, 41) | x | 0.58 | 0.59 | 0.44 |
y | 1.11 | 0.60 | 0.23 | |
(18, 41) | x | 0.13 | 0.17 | 0.14 |
y | 0.28 | 0.39 | 0.03 |
Target Localization Method | LS | NRLM | EKF | |
---|---|---|---|---|
Target Coordinate | Axis | |||
(14, 37) | x | 0.415 | 0.325 | 0.087 |
y | 2.028 | 0.264 | 0.085 | |
(18, 37) | x | 0.584 | 0.500 | 0.187 |
y | 3.130 | 0.334 | 0.154 | |
(14, 41) | x | 0.313 | 0.259 | 0.103 |
y | 1.282 | 0.158 | 0.063 | |
(18, 41) | x | 0.567 | 0.903 | 0.206 |
y | 1.405 | 0.301 | 0.049 |
Target Localization Method | LS | NRLM | EKF | |
---|---|---|---|---|
Target Coordinate | Axis | |||
(14, 37) | x | 1.191 | 1.336 | 0.400 |
y | 3.514 | 0.498 | 0.143 | |
(18, 37) | x | 0.995 | 0.968 | 0.216 |
y | 3.521 | 0.430 | 0.222 | |
(14, 41) | x | 1.734 | 1.036 | 0.574 |
y | 5.203 | 0.448 | 0.292 | |
(18, 41) | x | 1.449 | 1.178 | 0.718 |
y | 4.146 | 0.530 | 0.246 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juan, C.-W.; Hu, J.-S. Object Localization and Tracking System Using Multiple Ultrasonic Sensors with Newton–Raphson Optimization and Kalman Filtering Techniques. Appl. Sci. 2021, 11, 11243. https://doi.org/10.3390/app112311243
Juan C-W, Hu J-S. Object Localization and Tracking System Using Multiple Ultrasonic Sensors with Newton–Raphson Optimization and Kalman Filtering Techniques. Applied Sciences. 2021; 11(23):11243. https://doi.org/10.3390/app112311243
Chicago/Turabian StyleJuan, Chung-Wei, and Jwu-Sheng Hu. 2021. "Object Localization and Tracking System Using Multiple Ultrasonic Sensors with Newton–Raphson Optimization and Kalman Filtering Techniques" Applied Sciences 11, no. 23: 11243. https://doi.org/10.3390/app112311243
APA StyleJuan, C. -W., & Hu, J. -S. (2021). Object Localization and Tracking System Using Multiple Ultrasonic Sensors with Newton–Raphson Optimization and Kalman Filtering Techniques. Applied Sciences, 11(23), 11243. https://doi.org/10.3390/app112311243