Organic Matter and Pigments in the Wall Paintings of Me-Taw-Ya Temple in Bagan Valley, Myanmar
Abstract
:Featured Application
Abstract
1. Historical and Technical Background
2. Conservation Issue
3. Materials and Methods
3.1. Non-Invasive Methods
3.2. Micro Destructive Analyses
3.2.1. Materials
3.2.2. Methods
4. Results
4.1. Non-Invasive Investigations
4.1.1. ED-XRF Analysis
4.1.2. Portable Raman Analysis
4.2. Micro Destructive Investigations
4.2.1. ATR-FTIR Analysis
4.2.2. GC-MS Analysis
4.2.3. µ-Raman Analysis
4.2.4. PLM and ESEM-EDS Investigations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pichard, P. La composition architecturale des temples de Pagan. Comptes Rendus Séances Acad. Inscr. Belles Lett. 1992, 136, 357–374. [Google Scholar] [CrossRef]
- Statdner, M. Sacred Sites of Burma; River Books: Bangkok, Thailand, 2011. [Google Scholar]
- Yarmola, J.C. Conservation of Historic Brick Masonry in Pagan (Report No. 3); Technical Report UNDP/BUR/78/023, FMR/CC/CH/88/237 (UNDP); UNESCO: Paris, France, 1988. [Google Scholar]
- Hlaing, C.S.S. Scientific analysis and utilization of plant and fruit samples for conservation of Ancient Decorative Arts. In Proceedings of the Asia Cooperation Program for Conservation Science ACPCS, Daejeon, Korea, 1 April–31 August 2018. [Google Scholar]
- Lee, N.R.; Lee, H.S.; Han, K.S. Experimental Reinforcement Agent for Damaged Walls of Payathonzu Temple Murals in Bagan, Myanmar. J. Conserv. Sci. 2020, 36, 284–295. [Google Scholar] [CrossRef]
- Luján-Lunsford, R. Guidance Note in Approaches for Conservation of Mural Paintings and Architectural Decorative Works at Pagán; Internal UNESCO Report; UNESCO: Rome, Italy, 2017. [Google Scholar]
- Luján-Lunsford, R.; Zari, D. Conservation of Mural Paintings and External Stuccoes, Pagan, Union of Myanmar; UNESCO Contract BOC Ref. No. 392.736.2 and 392.738.3, UNDP Project, MYA/86/019; UNESCO: Rome, Italy, 1993. [Google Scholar]
- Schwartzbaum, P.M.; Zari, D.; Tint, U.B.; Lazzarini, L. The conservation of the mural paintings and external stuccoes of the temples of Pagan. Stud. Conserv. 1988, 33, 103–107. [Google Scholar] [CrossRef]
- Hays, J. Burmese Painting and Modern Art. Facts and Detail Website. Available online: https://factsanddetails.com/southeast-asia/Myanmar/sub5_5e/entry-3085.html (accessed on 20 July 2021).
- Me-taw-ya Temple Project—Capacity Building: A Conservation Project for the Repair, Strengthening and Recovery of Temple 1205a, Archaeological Area and Monuments of Pagán, Myanmar 2016–2020; Tokyo National Research Institute for Cultural Properties: Tokyo, Japan, 2021.
- Henau, P.; Tint, B. Contribution a l’étude des peintures murales de Pagan en Birmanie. Bull. Inst. R. Patrim. Artist. 1969, 11, 82–92. [Google Scholar]
- Pichard, P. Pagan, Burma’s ancient city of 2000 pagodas damaged by a violent earthquake. UNESCO Cour. 1976, 29, 24–29. [Google Scholar]
- Pichard, P. The Conservation of Monuments in Pagan, Myanmar; Assignment Report, UNDP/MYA/86/019, RACAP/PROAP/92/2; UNESCO-UNDP: Bangkok, Thailand, 1992. [Google Scholar]
- Pichard, P. The Restoration of Pagan; Technical Report RP/1975-76/3.411.6; FMR/CC/CH/76/116; UNESCO: Paris, France, 1976. [Google Scholar]
- Pichard, P. Progress of Work for the Preservation of Monuments and Artifacts at Selected Sites in Burma; Assignment Report, UNDP/BUR/78/023, FMR/CLT/CH/83/226 (UNDP); UNESCO: Paris, France, 1983. [Google Scholar]
- Pichard, P. Conservation of Monuments in Pagan, Burma; Assignment Report, UNDP/BUR/81/032, FMR/CLT/CH/83/236 (UNDP); UNESCO: Paris, France, 1988. [Google Scholar]
- Pichard, P. Conservation of Monuments in Pagan (December 1993–January 1994); Assignment Report, UNDP/MYA/86/019, FMR/CLT/CH/94/215 (UNDP); UNESCO: Paris, France, 1994. [Google Scholar]
- Post-Earthquake Damage Assessment Survey of Cultural Heritage Buildings at Pagán Archaeological Zone—Quick Report; Tokyo National Research Institute for Cultural Properties: Tokyo, Japan, 2016.
- Pichard, P. Inventory of Monuments at Pagan: Monuments 1137–1439; Kiscadale: Gartmore, Scotland, 1995; Volume 5, pp. 94–95. [Google Scholar]
- Amadori, M.L.; Fermo, P.; Raspugli, V.; Comite, V.; Mini, F.M.; Maekawa, Y.; Russa, M. La Integrated scientific investigations on the constitutive materials from Me-taw-ya Temple, Pagán Valley, Burma (Myanmar). Meas. J. Int. Meas. Confed. 2019, 131, 737–750. [Google Scholar] [CrossRef]
- Me-taw-ya Pagoda Project—Capacity Building: A Conservation Project for the Repair, Strengthening and Recovery of Temple 1205, Archaeological Area and Monuments of Pagán, Burma 2016–2020 Draft Report 2018; Tokyo National Research Institute for Cultural Properties: Tokyo, Japan, 2017.
- Cooper, J.B.; Marshall, S.; Jones, R.; Abdelkader, M.; Wise, K.L. Spatially compressed dual-wavelength excitation Raman spectrometer. Appl. Opt. 2014, 53, 3333. [Google Scholar] [CrossRef]
- Cooper, J.B.; Abdelkader, M.; Wise, K.L. Sequentially Shifted Excitation Raman Spectroscopy: Novel Algorithm and Instrumentation for Fluorescence-Free Raman Spectroscopy in Spectral Space. Appl. Spectrosc. 2013, 67, 973–984. [Google Scholar] [CrossRef] [PubMed]
- De Filipps, R.A.; Krupnick, G.A. The medicinal plants of Myanmar. PhytoKeys 2018, 102, 1–341. [Google Scholar] [CrossRef]
- Casoli, A.; Santoro, S. Organic materials in the wall paintings in Pompei: A case study of Insuladel Centenario. Chem. Cent. J. 2012, 6, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popelka-Filcoff, R.S.; Robertson, J.D.; Glascock, M.D.; Descantes, C. Trace element characterization of ochre from geological sources. J. Radioanal. Nucl. Chem. 2007, 272, 17–27. [Google Scholar] [CrossRef]
- Gardiner, N.J.; Robb, L.J.; Morley, C.K.; Searle, M.P.; Cawood, P.A.; Whitehouse, M.J.; Kirkland, C.L.; Roberts, N.M.W.; Myint, T.A. The tectonic and metallogenic framework of Myanmar: A Tethyan mineral system. Ore Geol. Rev. 2016, 79, 26–45. [Google Scholar] [CrossRef] [Green Version]
- Rosi, F.; Burnstock, A.; Van den Berg, K.J.; Miliani, C.; Brunetti, B.G.; Sgamellotti, A. A non-invasive XRF study supported by multivariate statistical analysis and reflectance FTIR to assess the composition of modern painting materials. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 71, 1655–1662. [Google Scholar] [CrossRef] [PubMed]
- Renda, V.; Mollica Nardo, V.; Anastasio, G.; Caponetti, E.; Vasi, C.S.; Saladino, M.L.; Armetta, F.; Trusso, S.; Ponterio, R.C. A multivariate statistical approach of X-ray fluorescence characterization of a large collection of reverse glass paintings. Spectrochim. Acta Part B At. Spectrosc. 2019, 159, 105655. [Google Scholar] [CrossRef]
- McCormack, J.K. The darkening of cinnabar in sunlight. Miner. Depos. 2000, 35, 796–798. [Google Scholar] [CrossRef]
- Frost, R. Raman spectroscopy of natural oxalates. Anal. Chim. Acta 2004, 517, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, E.J. (V. C.) Farmer, editor. The Infrared Spectra of Minerals. London (Mineralogical Society), 1974. x + 539 pp., 219 figs. Price £16. Mineral. Mag. 2018, 40, 104. [Google Scholar] [CrossRef]
- Prieto-Taboada, N.; Gómez-Laserna, O.; Martínez-Arkarazo, I.; Olazabal, M.Á.; Madariaga, J.M. Raman Spectra of the Different Phases in the CaSO4–H2O System. Anal. Chem. 2014, 86, 10131–10137. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Zhou, Y.; Frost, R.L. Structure comparison of Orpiment and Realgar by Raman spectroscopy. Spectrosc. Lett. 2017, 50, 23–29. [Google Scholar] [CrossRef]
- Mernagh, T.P. Use of the laser Raman microprobe for discrimination amongst feldspar minerals. J. Raman Spectrosc. 1991, 22, 453–457. [Google Scholar] [CrossRef]
- Madejova, J. FTIR Techniques in Clay Mineral Studies. Vib. Spectrosc. 2003, 31, 1–10. [Google Scholar] [CrossRef]
- Conti, C.; Casati, M.; Colombo, C.; Realini, M.; Brambilla, L.; Zerbi, G. Phase transformation of calcium oxalate dihydrate–monohydrate: Effects of relative humidity and new spectroscopic data. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 128, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Frost, R.L.; Yang, J.; Ding, Z. Raman and FTIR spectroscopy of natural oxalates: Implications for the evidence of life on Mars. Chin. Sci. Bull. 2003, 48, 1844–1852. [Google Scholar] [CrossRef]
- Cariati, F.; Rampazzi, L.; Toniolo, L.; Pozzi, A. Calcium oxalate films on stone surfaces: Experimental assessment of the chemical formation. Stud. Conserv. 2000, 45, 180–188. [Google Scholar] [CrossRef]
- Zviagina, B.B.; Drits, V.A.; Dorzhieva, O.V. Distinguishing Features and Identification Criteria for K-Dioctahedral 1M Micas (Illite-Aluminoceladonite and Illite-Glauconite-Celadonite Series) from Middle-Infrared Spectroscopy Data. Minerals 2020, 10, 153. [Google Scholar] [CrossRef] [Green Version]
- Nayak, B.R.; Rao, R.; Pattabiraman, T.N. Studies on plant gums. Isolation and characterisation of the major polysaccharide from Neem (Azadirachta indica) gum. Proc. Indian Acad. Sci. 1978, 87, 261–269. [Google Scholar] [CrossRef]
- Lwin, U.T. Old Burmese Painting. Oriens Extrem. 1974, 21, 237–259. [Google Scholar]
- Lluveras-Tenorio, A.; Mazurek, J.; Restivo, A.; Colombini, M.P.; Bonaduce, I. Analysis of plant gums and saccharide materials in paint samples: Comparison of GC-MS analytical procedures and databases. Chem. Cent. J. 2012, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Mawahib, E.M.; Elfatih, A.; Hassan Mohammed, E.O. Characterization and rheological behaviour of neem gum (Azadirachta indica). Int. J. Chem. Stud. 2018, 6, 1977–1981. [Google Scholar]
- Zari, D.; Giantomassi, C.; Schwartzbaum, P.M. Conservation of Mural Paintings. Pagan, Burma (25 December 1984–25 January 1985); Mission Report: Contract BOC ref. 712.091.4 BUR/78/023; ICCROM: Rome, Italy, 1985. [Google Scholar]
- Omowanle, J.; Ayo, R.J.; Habila, J.I.; Lekhaize, J.; Adegbe, E.A. Physico-chemical and GC-MS analysis of some selected plant seed oil: Castor, neem and rubber seed oils. FUW Trends Sci. Technol. J. 2018, 3, 644–651. [Google Scholar]
- Lanterna, G.; Mairani, A.; Matteini, M.; Rizzi, M.; Vigato, A. Characterisation of decay markers on pictorial models simulating ancient polychromies. In Proceedings of the 2nd International Congress on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin, Paris, France, 5–9 July 1999; Elsevier: Paris, France, 2000; pp. 5–9. [Google Scholar]
- Casoli, A.; Montanari, A.; Palla, L. Painted models simulating ancient polychromies: A statistical analysis of chemical results. In Proceedings of the 3rd International Congress on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin, Alcalá De Henares, Spain, 9–14 July 2001; Elsevier: Paris, France, 2001; pp. 839–845. [Google Scholar]
- De Faria, D.L.A.; Venâncio Silva, S.; de Oliveira, M.T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878. [Google Scholar] [CrossRef]
- Scheuermann, W.; Ritter, G.J. Raman Spectra of Cinnabar (HgS), Realgar (As4S4) and Orpiment (As2S3). Z. Nat. A 1969, 24, 408–411. [Google Scholar] [CrossRef]
- Krishnan, R.S. Raman spectrum of quartz. Nature 1945, 155, 452. [Google Scholar] [CrossRef]
- Ohsaka, T.; Izumi, F.; Fujiki, Y. Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 1978, 7, 321–324. [Google Scholar] [CrossRef]
- Chiriu, D.; Pala, M.; Pisu, F.A.; Cappellini, G.; Ricci, P.C.; Carbonaro, C.M. Time through colors: A kinetic model of red vermilion darkening from Raman spectra. Dye. Pigment. 2021, 184, 108866. [Google Scholar] [CrossRef]
- Amadori, M.L.; Costantini, I.; Madariaga Mota, J.M.; Valentini, L.; Ferrucci, F.; Mengacci, V.; Camaiti, M. Calcium antimonate: A new discovery in colour palette of Paestum wall paintings. Microchem. J. 2021, 168, 106401. [Google Scholar] [CrossRef]
- Clark, R.J.H.; Wang, Q.; Correia, A. Can the Raman spectrum of anatase in artwork and archaeology be used for dating purposes? Identification by Raman microscopy of anatase in decorative coatings on Neolithic (Yangshao) pottery from Henan, China. J. Archaeol. Sci. 2007, 34, 1787–1793. [Google Scholar] [CrossRef]
- Jawhari, T.; Roid, A.; Casado, J. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 1995, 33, 1561–1565. [Google Scholar] [CrossRef]
- Tomasini, E.P.; Halac, E.B.; Reinoso, M.; Di Liscia, E.J.; Maier, M.S. Micro-Raman spectroscopy of carbon-based black pigments. J. Raman Spectrosc. 2012, 43, 1671–1675. [Google Scholar] [CrossRef]
- Coccato, A.; Jehlicka, J.; Moens, L.; Vandenabeele, P. Raman spectroscopy for the investigation of carbon-based black pigments. J. Raman Spectrosc. 2015, 46, 1003–1015. [Google Scholar] [CrossRef] [Green Version]
- Ryan, P.C.; Huertas, F.; Pincus, L.N. Arsenic-bearing serpentine-group minerals: Mineral synthesis with insights for the arsenic cycle. Clays Clay Miner. 2019, 67, 488–506. [Google Scholar] [CrossRef]
- Singh, M.; Arbad, B. Chemistry of preservation of the Ajanta murals. Int. J. Conserv. Sci. 2013, 4, 161–176. [Google Scholar]
- Whitbread, A.K.J. Mediaeval Burmese wall-paintings from a temple at Pagan now in the Hamburgisdies Museum für Völkerkunde, Hamburg. Oriens Extrem. 1971, 18, 85–122. [Google Scholar]
- Winter, J.; West Fitzhugh, E. Pigments based on carbon. In Artist’s Pigments, a Handbook of Their History and Characteristics; Berrie, B.H., Ed.; National Gallery of Art: Washington, DC, USA, 2007; pp. 24–26. [Google Scholar]
- Helwig, K. Iron oxide pigments, natural and synthetic. In Artist’s Pigments, a Handbook of Their History and Characteristics; Berrie, B.H., Ed.; National Gallery of Art: Washington, DC, USA, 2007; Volume 4. [Google Scholar]
- Hattori, K.; Takahashi, Y.; Guillot, S.; Johanson, B. Occurrence of arsenic (V) in forearc mantle serpentinites based on X-ray absorption spectroscopy study. Geochim. Cosmochim. Acta 2005, 69, 5585–5596. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Zari, D.; Schwartzbaum, P.M. Conservation of Mural Paintings. Pagan, Burma—BUR/78/023; UNESCO Contract 651.278.3; UNESCO: Rome, Italy, 1983. [Google Scholar]
- Green, L. Colour transformations of ancient Egyptian pigments. In Colour and Painting in Ancient Egypt; British Museum Press: London, UK, 2001; pp. 43–48. [Google Scholar]
Code | Sampling Area | Description | Analytical Techniques |
---|---|---|---|
MY31 | Vault, lateral niche north | Blackish paint layers and plaster | PLM, ESEM-EDS |
MY32 | Vault, lateral niche north | Brownish paint layers and plaster | GC-MS, PLM, ESEM-EDS |
MY33 | Vestibule, north-east wall | Reddish paint layer and plaster | µ-Raman, GC-MS, PLM, ESEM-EDS, ATR-FTIR |
MY44 | Entrance, north-west wall | Blackish paint layer and plaster | µ-Raman, PLM, ESEM-EDS |
MY45 | Entrance, north-west wall | Plaster | µ-Raman, PLM, ESEM-EDS, ATR-FTIR |
MY45e | Vestibule, north-east wall | Brownish/yellowish paint layer and plaster | GC-MS, PLM, ESEM-EDS, ATR-FTIR |
MY46 | Vestibule, north-east wall | Blackish paint layer | GC-MS |
G1 | Acacia leucophloea | Acacia gum | GC-MS |
G2 | Acacia catechu | Acacia gum | GC-MS |
G3 | Azadirachta indica | Neem gum | GC-MS |
Gum | Arabinose | Fucose | Xylose | Mannose | Galactose | Glucuronic Acid | Glucose |
---|---|---|---|---|---|---|---|
G1 | 76.22 | 1.91 | 0.34 | 2.61 | 16.53 | 2.39 | |
G2 | 76.45 | 1.06 | 0.28 | 1.72 | 19.81 | 0.55 | |
G3 | 43.16 | 4.56 | 38.81 | 13.47 | |||
MY32 | 48.00 | 35.80 | 16.20 | ||||
MY33 | 48.08 | 36.20 | 15.72 | ||||
MY45e | 47.90 | 35.32 | 16.78 | ||||
MY46 | 43.80 | 38.33 | 17.87 |
Sample | Maximum Thickness (µm) | Typology | Detected Elements (ESEM/EDX) | Stratigraphic Identification (PLM + ESEM-EDX) |
---|---|---|---|---|
MY33 | 15 | painting layer | Ca, Hg, Si, Al, As, S, Fe, K, Cl, (Mg, P) | Calcite, cinnabar/vermilion, As-based particles |
20 | primer | Ca, As, Si, Ti, Cl, Fe, Na, (S, P) | Calcium carbonate, As-compounds, silicates | |
1880 | plaster | Ca, Si, Fe, Ti, Al, K, Mg, Cl, S, P, Na | Calcium carbonate, aluminosilicates, ilmenite | |
MY32 | 40 | painting layer | Ca, Fe, Si, As, Mg (Al, K, S) | Fe-based pigments (earths), As-based particles |
45 | primer | As, Ca, Mg, Si, Cr, Fe, Ti (Al, P) | Calcium carbonate, As-based particles | |
1800 | plaster | Ca, Si, (Ti, Mg, Al, Fe, K) | Calcium carbonate, aluminosilicates, Mg-based particles | |
MY45e | 30 | painting layers | Ca, Al, Si, Fe, Ti, K, Mg, As, (P, S) | Calcium carbonate, Fe-based oxides, As-based particles |
10 | primer | Ca, Si, As, Hg, Mg (Al, Cl, K) | Calcium carbonate, silicates, As-based particles, vermillion | |
1600 | plaster | Ca, Si, Al, Mg, Fe, K, Ti, Na, Cr, Cl, S, P | Calcium carbonate, silicates, quartz, Ti-Fe oxides, Fe-oxides | |
160 | Si, Al, Fe, Mg, Na, Ca, S, K | Silicates, plagioclase, Fe-based oxides, calcium carbonate, pyrite particles | ||
MY31 | 30 | painting layer | Ca, Si, Fe, As, C, Mg, Al, (K, Cl, P) | Carbon black, As-based particles, Fe-based oxides, silicates |
35 | primer | Ca, As, Mg, Si, (Al, Na, K, Fe, Cl) | As-based particles, calcium carbonate, aluminosilicates | |
400 | plaster | Ca, Si, Mg, K, (Al, Na, Cl, P, S, Ti) | Calcium carbonate, quartz, aluminosilicates | |
MY44 | 20 | painting layers | C, Ca, Fe, Mg, Si, As (Na, K, S, Cl) | Carbon black, calcite, Fe-based oxides, silicates, As-based particles |
20 | primer | Ca, Mg, Si, As, (Al, Fe, K, Na, Cl, Cu, Zn) | Calcium carbonate, silicates, As-based particles | |
340 | plaster | Ca, Si, K, Fe, Al, Mg, Ti, S, Cl (Na, P) | Calcium carbonate, silicates, quartz, aluminosilicates, Fe-based oxides, Ti-based particles |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amadori, M.L.; Mengacci, V.; Vagnini, M.; Casoli, A.; Holakooei, P.; Eftekhari, N.; Lin, K.; Maekawa, Y.; Germinario, G. Organic Matter and Pigments in the Wall Paintings of Me-Taw-Ya Temple in Bagan Valley, Myanmar. Appl. Sci. 2021, 11, 11441. https://doi.org/10.3390/app112311441
Amadori ML, Mengacci V, Vagnini M, Casoli A, Holakooei P, Eftekhari N, Lin K, Maekawa Y, Germinario G. Organic Matter and Pigments in the Wall Paintings of Me-Taw-Ya Temple in Bagan Valley, Myanmar. Applied Sciences. 2021; 11(23):11441. https://doi.org/10.3390/app112311441
Chicago/Turabian StyleAmadori, Maria Letizia, Valeria Mengacci, Manuela Vagnini, Antonella Casoli, Parviz Holakooei, Negar Eftekhari, Kyi Lin, Yoshifumi Maekawa, and Giulia Germinario. 2021. "Organic Matter and Pigments in the Wall Paintings of Me-Taw-Ya Temple in Bagan Valley, Myanmar" Applied Sciences 11, no. 23: 11441. https://doi.org/10.3390/app112311441
APA StyleAmadori, M. L., Mengacci, V., Vagnini, M., Casoli, A., Holakooei, P., Eftekhari, N., Lin, K., Maekawa, Y., & Germinario, G. (2021). Organic Matter and Pigments in the Wall Paintings of Me-Taw-Ya Temple in Bagan Valley, Myanmar. Applied Sciences, 11(23), 11441. https://doi.org/10.3390/app112311441