Judgments of Object Size and Distance across Different Virtual Reality Environments: A Preliminary Study
Abstract
:Featured Application
Abstract
1. Introduction
2. Background
3. Materials and Methods
3.1. Research Goal and Objectives
- To identify the impact of different levels of visuospatial cues on distance perception. For this, we specifically measured both self-to-object (egocentric) distance and object-to-object (allocentric) distances.
- To assess the influence of visuospatial cues on the accuracy of size perception. To this end, we considered all dimensions of an object (i.e., length, depth, and height).
3.2. Participants
3.3. Study Environment
3.4. Task and Procedure
3.4.1. Distance Estimation Task
3.4.2. Size Estimation Task
4. Results
4.1. Egocentric Distance Perception
4.2. Allocentric Distance Perception
4.3. Size Estimation
5. Discussion
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clément, G.; Allaway, H.C.; Demel, M.; Golemis, A.; Kindrat, A.N.; Melinyshyn, A.N.; Thirsk, R. Long-duration spaceflight increases depth ambiguity of reversible perspective figures. PLoS ONE 2015, 10, e0132317. [Google Scholar]
- Stapleton, T.; Heldmann, M.; Schneider, S.; O’Neill, J.; Samplatsky, D.; White, K.; Corallo, R. Environmental Control and Life Support for Deep Space Travel. In Proceedings of the 46th International Conference on Environmental Systems, Vienna, Austria, 10–14 July 2016. [Google Scholar]
- Kanas, N. Psychology in deep space. Psychologist 2015, 28, 804–807. [Google Scholar]
- Marin, F.; Beluffi, C. Computing the Minimal Crew for a multi-generational space journey towards Proxima Centauri b. J. Br. Interplanet. Soc. 2018, 71, 45–52. [Google Scholar]
- Smith, C.M. Estimation of a genetically viable population for multigenerational interstellar voyaging: Review and data for project Hyperion. Acta Astronaut. 2014, 97, 16–29. [Google Scholar] [CrossRef]
- Tiziani, M. The Colonization of Space, An Anthropological Outlook. Antrocom Online J. Anthropol. 2013, 9, 225–236. [Google Scholar]
- Stahn, A.C.; Gunga, H.C.; Kohlberg, E.; Gallinat, J.; Dinges, D.F.; Kühn, S. Brain changes in response to long Antarctic expeditions. N. Engl. J. Med. 2019, 381, 2273–2275. [Google Scholar] [CrossRef]
- Menchaca-Brandan, M.A.; Liu, A.M.; Oman, C.M.; Natapoff, A. Influence of perspective-taking and mental rotation abilities in space teleoperation. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction, Arlington, VA, USA, 9–11 March 2007; pp. 271–278. [Google Scholar]
- Lapointe, J.F.; Dupuis, E.; Hartman, L.; Gillett, R. An analysis of low-earth orbit space operations. In National Research Council of Canada. In Proceedings of the Joint Association of Canadian Ergonomists/Applied Ergonomics (ACE-AE) Conference, Banff, AB, Canada, 21–23 October 2002. [Google Scholar]
- Oman, C. Spatial orientation and navigation in microgravity. In Spatial Processing in Navigation, Imagery and Perception; Springer: Boston, MA, USA, 2007; pp. 209–247. [Google Scholar]
- Heth, C.D.; Cornell, E.H.; Alberts, D.M. Differential use of landmarks by 8-and 12-year-old children during route reversal navigation. J. Environ. Psychol. 1997, 17, 199–213. [Google Scholar] [CrossRef]
- Dabbs, J.M., Jr.; Chang, E.L.; Strong, R.A.; Milun, R. Spatial ability, navigation strategy, and geographic knowledge among men and women. Evol. Hum. Behav. 1998, 19, 89–98. [Google Scholar] [CrossRef]
- Castelli, L.; Corazzini, L.L.; Geminiani, G.C. Spatial navigation in large-scale virtual environments: Gender differences in survey tasks. Comput. Hum. Behav. 2008, 24, 1643–1667. [Google Scholar] [CrossRef]
- Witmer, B.G.; Sadowski, W.J., Jr. Nonvisually guided locomotion to a previously viewed target in real and virtual environments. Hum. Factors 1998, 40, 478–488. [Google Scholar] [CrossRef]
- Weisberg, S.M.; Schinazi, V.R.; Newcombe, N.S.; Shipley, T.F.; Epstein, R.A. Variations in cognitive maps: Understanding individual differences in navigation. J. Exp. Psychol. Learn. Mem. Cogn. 2014, 40, 669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shebilske, W.L.; Tubré, T.; Tubré, A.H.; Oman, C.M.; Richards, J.T. Three-dimensional spatial skill training in a simulated space station: Random vs. blocked designs. Aviat. Space Environ. Med. 2006, 77, 404–409. [Google Scholar] [PubMed]
- Guo, J.; Jiang, G.; Liu, Y.; Tian, Y. The Hierarchical Model of Spatial Orientation Task in a Multi-Module Space Station. In Advances in Ergonomics Modeling, Usability & Special Populations; Springer: Cham, Switzerland, 2017; pp. 129–138. [Google Scholar]
- Jain, D.; Sra, M.; Guo, J.; Marques, R.; Wu, R.; Chiu, J.; Schmandt, C. Immersive terrestrial scuba diving using virtual reality. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, San Jose, CA, USA, 7–12 May 2016; pp. 1563–1569. [Google Scholar]
- Miiro, S. The Issues and Complexities Surrounding the Future of Long Duration Spaceflight. Master’s Thesis, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA, 2017. [Google Scholar]
- Kanas, N.; Manzey, D. Space Psychology and Psychiatry; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; Volume 22. [Google Scholar]
- Newcombe, N.S. Spatial cognition. In Steven’s Handbook of Experimental Psychology; Pashler, H., Medin, D., Eds.; Jossey-Bass: San Francisco, CA, USA, 2002; Volume 2, pp. 113–163. [Google Scholar]
- Linenger, J.M. Off the Planet: Surviving Five Perilous Months aboard the Space Station Mir; McGraw-Hill: New York, NY, USA, 2000; p. 256. [Google Scholar]
- Clément, G.; Lathan, C.; Lockerd, A. Perception of depth in microgravity during parabolic flight. Acta Astronaut. 2008, 63, 828–832. [Google Scholar] [CrossRef]
- Oravetz, C. Human Estimation of Slope, Distance, and Height of Terrain in Simulated Lunar Conditions. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2009. [Google Scholar]
- Villard, E.; Garcia-Moreno, F.T.; Peter, N.; Clément, G. Geometric visual illusions in microgravity during parabolic flight. Neuroreport 2005, 16, 1395–1398. [Google Scholar] [CrossRef]
- Jörges, B.; López-Moliner, J. Gravity as a strong prior: Implications for perception and action. Front. Hum. Neurosci. 2017, 11, 203. [Google Scholar] [CrossRef] [Green Version]
- MacNeil, R.R.; Che, H.; Khan, M. Human space exploration: Neurosensory, perceptual and neurocognitive considerations. Univ. Tor. Med. J. 2016, 93, 19–26. [Google Scholar]
- Lockard, E.S. From Hostile to Hospitable: Changing Perceptions of the Space Environment. In Proceedings of the 45th International Conference on Environmental Systems, Bellevue, WA, USA, 12–16 July 2015. [Google Scholar]
- Riecke, B.E.; Veen, H.A.V.; Bülthoff, H.H. Visual homing is possible without landmarks: A path integration study in virtual reality. Presence Teleoperators Virtual Environ. 2002, 11, 443–473. [Google Scholar] [CrossRef]
- Sturz, B.R.; Bodily, K.D. Encoding of variability of landmark-based spatial information. Psychol. Res. 2010, 74, 560–567. [Google Scholar] [CrossRef]
- Naceri, A.; Chellali, R.; Hoinville, T. Depth perception within peripersonal space using head-mounted display. Presence Teleoperators Virtual Environ. 2011, 20, 254–272. [Google Scholar] [CrossRef]
- Vienne, C.; Masfrand, S.; Bourdin, C.; Vercher, J.L. Depth Perception in Virtual Reality Systems: Effect of Screen Distance, Environment Richness and Display Factors. IEEE Access 2020, 8, 29099–29110. [Google Scholar] [CrossRef]
- Ballestin, G.; Chessa, M.; Solari, F. A Registration Framework for the Comparison of Video and Optical See-through Devices in Interactive Augmented Reality. IEEE Access 2021, 9, 64828–64843. [Google Scholar] [CrossRef]
- Gerig, N.; Mayo, J.; Baur, K.; Wittmann, F.; Riener, R.; Wolf, P. Missing depth cues in virtual reality limit performance and quality of three dimensional reaching movements. PLoS ONE 2018, 13, e0189275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, W.B.; Willemsen, P.; Gooch, A.A.; Creem-Regehr, S.H.; Loomis, J.M.; Beall, A.C. Does the quality of the computer graphics matter when judging distances in visually immersive environments? Presence Teleoperators Virtual Environ. 2004, 13, 560–571. [Google Scholar] [CrossRef]
- Unity 3D. 2019. Available online: https://unity3d.com/ (accessed on 17 August 2019).
- Osborne, J.W.; Overbay, A. The power of outliers (and why researchers should always check for them). Pract. Assess. Res. Eval. 2004, 9, 6. [Google Scholar]
- Osborne, J.W.; Christiansen, W.R.I.; Gunter, J.S. Educational psychology from a statistician’s perspective: A review of the quantitative quality of our field. In Proceedings of the Annual Meeting of the American Educational Research Association, Seattle, WA, USA, 10–14 April 2001. [Google Scholar]
- Judd, C.M.; McClelland, G.H.; Ryan, C.S. Data Analysis: A Model Comparison Approach; Routledge: London, UK, 2011. [Google Scholar]
- Barnett, V.; Lewis, T. Outliers in Statistical Data; Wiley Series in Probability and Mathematical Statistics. Applied Probability and Statistics; Wiley: Hoboken, NJ, USA, 1984. [Google Scholar]
- Van Selst, M.; Jolicoeur, P. A solution to the effect of sample size on outlier elimination. Q. J. Exp. Psychol. Sect. A 1994, 47, 631–650. [Google Scholar] [CrossRef]
- Knapp, J.M.; Loomis, J.M. Limited field of view of head-mounted displays is not the cause of distance underestimation in virtual environments. Presence Teleoperators Virtual Environ. 2004, 13, 572–577. [Google Scholar] [CrossRef]
- Willemsen, P.; Gooch, A.A. Perceived egocentric distances in real, image-based, and traditional virtual environments. In Proceedings of the IEEE Virtual Reality 2002, Orlando, FL, USA, 24–28 March 2002; IEEE: Piscataway, NJ, USA, 2002; pp. 275–276. [Google Scholar]
- Rousset, T.; Bourdin, C.; Goulon, C.; Monnoyer, J.; Vercher, J.L. Misperception of egocentric distances in virtual environments: More a question of training than a technological issue? Displays 2018, 52, 8–20. [Google Scholar] [CrossRef]
- Peer, A.; Ponto, K. Evaluating perceived distance measures in room-scale spaces using consumer-grade head mounted displays. In Proceedings of the 2017 IEEE Symposium on 3d User Interfaces (3dui), Los Angeles, CA, USA, 18–19 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 83–86. [Google Scholar]
- Renner, R.S.; Velichkovsky, B.M.; Helmert, J.R. The perception of egocentric distances in virtual environments—A review. ACM Comput. Surv. (CSUR) 2013, 46, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Creem-Regehr, S.H.; Stefanucci, J.K.; Thompson, W.B. Perceiving absolute scale in virtual environments: How theory and application have mutually informed the role of body-based perception. In Psychology of Learning and Motivation; Academic Press: Cambridge, MA, USA, 2015; Volume 62, pp. 195–224. [Google Scholar]
- Jones, J.A.; Swan, J.E.; Singh, G.; Kolstad, E.; Ellis, S.R. The effects of virtual reality, augmented reality, and motion parallax on egocentric depth perception. In Proceedings of the 5th Symposium on Applied Perception in Graphics and Visualization, Los Angeles, CA, USA, 9–10 August 2008; pp. 9–14. [Google Scholar]
- Cutting, J.E. How the eye measures reality and virtual reality. Behav. Res. Methods Instrum. Comput. 1997, 29, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Jones, E.M.; Glover, K. (Eds.) Apollo Lunar Surface Journal. 25 November 2008. Available online: http://history.nasa.gov/alsj/ (accessed on 27 April 2021).
- Oravetz, C.T.; Young, L.R.; Liu, A.M. Slope, distance, and height estimation of lunar and lunar-like terrain in a virtual reality environment. Gravit. Space Res. 2011, 22. [Google Scholar]
- Clark, T.K.; Young, L.R.; Stimpson, A.J.; Duda, K.R.; Oman, C.M. Numerical simulation of human orientation perception during lunar landing. Acta Astronaut. 2011, 69, 420–428. [Google Scholar] [CrossRef]
- Redelmeier, D.A.; Raza, S. Optical illusions and life-threatening traffic crashes: A perspective on aerial perspective. Med. Hypotheses 2018, 114, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Demidov, N.E.; Lukin, V.V. Antarctica as a testing ground for manned missions to the Moon and Mars. Sol. Syst. Res. 2017, 51, 104–120. [Google Scholar] [CrossRef]
- Heiken, G.; Jones, E. On the Moon: The Apollo Journals; Springer Science & Business Media: Berlin/Heidelberg, Germany; IBM Corp.: Armonk, NY, USA, 2007. [Google Scholar]
- Patterson, Z. Effects of Avatar Hand-Size Modifications on Size Judgments of Familiar and Abstract Objects in Virtual Reality. Master’s Thesis, University of Minnesota, Minneapolis, MN, USA, 2019. [Google Scholar]
- Clément, G. Fundamentals of Space Medicine; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 23. [Google Scholar]
- Rahill, K. Lunar Psychophysics: Effects of Atmospheric Light Scattering on Perceptual Distortions in a Lunar Virtual Environment. Ph.D. Thesis, Catholic University of America, Washington, DC, USA, 2019. [Google Scholar]
- Higashiyama, A. Horizontal and vertical distance perception: The discorded-orientation theory. Percept. Psychophys. 1996, 58, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Bertels, C. Crew Maintenance Lessons Learned from ISS and Considerations for Future Manned Missions. In Proceedings of the SpaceOps 2006 Conference, Rome, Italy, 19–23 June 2006; p. 5952. [Google Scholar]
- Serna, J.G.; Gonzalez, F.; Vanegas, F.; Flannery, D. A probabilistic based UAV mission planning and navigation for planetary exploration. In Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 1–4 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 594–599. [Google Scholar]
- Ross, H.E. Perceptual and motor-skills of divers under water. Int. Rev. Ergon. 1989, 3, 155–181. [Google Scholar]
Environment | Stimuli | |||||
---|---|---|---|---|---|---|
Group 1 | E1 | E2 | E3 | Set A | Set B | Set C |
Group 2 | E2 | E1 | E3 | Set B | Set A | Set C |
Group 3 | E3 | E2 | E1 | Set C | Set A | Set B |
Group 4 | E1 | E3 | E2 | Set A | Set C | Set B |
Group 5 | E2 | E3 | E2 | Set B | Set C | Set A |
Group 6 | E3 | E1 | E2 | Set C | Set B | Set A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.; Faghihi, N.; Dixit, M.; Vaid, J.; McNamara, A. Judgments of Object Size and Distance across Different Virtual Reality Environments: A Preliminary Study. Appl. Sci. 2021, 11, 11510. https://doi.org/10.3390/app112311510
Park H, Faghihi N, Dixit M, Vaid J, McNamara A. Judgments of Object Size and Distance across Different Virtual Reality Environments: A Preliminary Study. Applied Sciences. 2021; 11(23):11510. https://doi.org/10.3390/app112311510
Chicago/Turabian StylePark, Hannah, Nafiseh Faghihi, Manish Dixit, Jyotsna Vaid, and Ann McNamara. 2021. "Judgments of Object Size and Distance across Different Virtual Reality Environments: A Preliminary Study" Applied Sciences 11, no. 23: 11510. https://doi.org/10.3390/app112311510
APA StylePark, H., Faghihi, N., Dixit, M., Vaid, J., & McNamara, A. (2021). Judgments of Object Size and Distance across Different Virtual Reality Environments: A Preliminary Study. Applied Sciences, 11(23), 11510. https://doi.org/10.3390/app112311510