Sorption of 137Cs and 90Sr on Organic Sorbents
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Composition of the Sorbents
3.2. Chemical Composition and Acid-Base Properties of the Sorbents
3.3. Capacitive and Surface Properties of Sorbents
3.4. Sorption of Cs (I) and Sr (II)
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Krupskaya, V.V.; Biryukov, D.V.; Belousov, P.E.; Lekhov, V.A.; Romanchuk, A.Y.; Kalmykov, S.N. Use of natural clay materials to increase nuclear and radiation safety of nuclear legacy facilities. Radioact. Waste 2018, 2, 30–43. (In Russian) [Google Scholar]
- Krupskaya, V.V.; Zakusin, S.V.; Lekhov, V.A.; Dorzhieva, O.V.; Belousov, P.E.; Tyupina, E.A. Buffer Properties of Bentonite Barrier Systems for Radioactive Waste Isolation in Geological Repository in the Nizhnekanskiy Massif. Radioact. Waste 2020, 1, 35–55. (In Russian) [Google Scholar] [CrossRef]
- Ilina, O.A.; Krupskaya, V.V.; Vinokurov, S.E.; Kalmykov, S.N. State-of-Art in the Development and Use of Clay Materials as Engineered Safety Barriers at Radioactive Waste Conservation and Disposal Facilities in Russia. Radioact. Waste 2019, 4, 71–84. [Google Scholar] [CrossRef]
- Platonov, V.V.; Kalmykov, S.N.; Pislyak, V.G.; Tananaev, I.G. Use of humic materials for solving radioecological problems. Bull. Far East. Branch Russ. Acad. Sci. 2016, 3, 72–79. [Google Scholar]
- Samoilov, V.I.; Saduakasova, A.T.; Zelenin, V.I.; Kulenova, N.A. Investigation of the process of sorption of uranium from lake water using natural sorbents and their modification products. Min. Inf. Anal. Bull. 2016, 4, 283–291. [Google Scholar]
- Belousov, P.; Semenkova, A.; Egorova, T.; Romanchuk, A.; Zakusin, S.; Dorzhieva, O.; Tyupina, E.; Izosimova, Y.; Tolpeshta, I.; Chernov, M.; et al. Cesium Sorption and Desorption on Glauconite, Bentonite, Zeolite, and Diatomite. Minerals 2019, 9, 625. [Google Scholar] [CrossRef] [Green Version]
- Semenkova, A.; Belousov, P.; Rzhevskaia, A.; Izosimova, Y.; Maslakov, K.; Tolpeshta, I.; Romanchuk, A.; Krupskaya, V. U(VI) sorption onto natural sorbents. J. Radioanal. Nucl. Chem. 2020, 326, 293–301. [Google Scholar] [CrossRef]
- Dobrovolskaya, T.G.; Golovchenko, A.V.; Zvyagintsev, D.G.; Inisheva, L.I.; Kurakov, A.V.; Smagin, A.V.; Zenova, G.M.; Lysak, L.V.; Semenova, T.A.; Stepanov, A.L.; et al. Functioning of Microbial Complexes in High-Moor Peatlands–Analysis of the Reasons for the Slow Destruction of Peat; KMK Scientific Publishing Association: Moscow, Russia, 2013; p. 128. [Google Scholar]
- Khromushin, V.A.; Tchesnova, T.V.; Platonov, V.V.; Khadartsev, A.A.; Kireev, S.S. The shungite as natural nanotechnologie (literature review). J. New Med. Technol. E J. 2014, 1, 1–8. [Google Scholar] [CrossRef]
- Lukin, A.E. On genesis of shungites. Geol. J. 2005, 4, 27–47. [Google Scholar]
- Polunina, I.A.; Goncharova, I.S.; Visotskii, V.V.; Petukhova, G.A.; Polunin, K.E.; Ulyanov, A.V.; Buryak, A.K. Modification of shungite material for use in sorption and membrane technology. Sorpt. Chromatogr. Process. 2017, 8, 181–185. [Google Scholar]
- Andryushchenko, N.D.; Safonov, A.V.; Konevnik, Y.V.; Kondrashova, A.A.; Proshin, I.M.; Zakharova, E.V.; Babich, T.L.; Ivanov, P.V. Sorption characteristics of materials of the filtration barrier in upper aquifers contaminated with radionuclides. Radiochemistry 2017, 4, 414–424. [Google Scholar] [CrossRef]
- Moore, D.M.; Reynolds, R.C., Jr. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 1999; p. 378. [Google Scholar]
- Post, J.E.; Bish, D.L. Rietveld refinement of crystal structures using powder X-ray diffraction data. Rev. Miner. Geochem. 1989, 20, 277–308. [Google Scholar]
- Doebelin, N.; Kleeberg, R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Cryst. 2015, 48, 1573–1580. [Google Scholar] [CrossRef] [Green Version]
- Vorobyova, L.A. Chemical Analysis of Soils; Moscow State University: Moscow, Russia, 1998. [Google Scholar]
- Bezhin, N.A.; Dovhyi, I.I.; Kapranov, S.V.; Bobko, N.I.; Milyutin, V.V.; Kaptakov, V.O.; Kozlitin, E.A.; Tananaev, I.G. Separation of radiostrontium from seawater using various types of sorbents. J. Radioanal. Nucl. Chem. 2021, 328, 1199–1209. [Google Scholar] [CrossRef]
- Campus, A.; February, R.; Yusan, S.; Erenturk, S. Adsorption Characterization of Strontium on PAN/Zeolite Composite Adsorbent. World J. Nucl. Sci. Technol. 2011, 1, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Khandaker, S.; Kuba, T.; Kamida, S.; Uchikawa, Y. Adsorption of cesium from aqueous solution by raw and concentrated nitric acid-modified bamboo charcoal. J. Environ. Chem. Eng. 2017, 5, 1456–1464. [Google Scholar] [CrossRef]
- Orlov, D.S. Humic Acids of Soils and the General Theory of Humification, 1st ed.; Moscow State University: Moscow, Russia, 1990; p. 323. [Google Scholar]
- Stevenson, F.J. Humus Chemistry, Genesis, Composition, Reaction; John Wiley: New York, NY, USA, 1994; p. 444. [Google Scholar]
- Sanzharova, N.I.; Sysoeva, A.A.; Isamov, N.N.; Aleksakhin, R.M.; Kuznetsov, V.K.; Zhigareva, T.L. The role of chemistry in the rehabilitation of agricultural lands subjected to radioactive contamination. Russ. Chem. 2005, 3, 26–34. [Google Scholar]
- Singh, B.K.; Jain, A.; Kumar, S.; Tomar, B.S.; Tomar, R.; Manchanda, V.K.; Ramanathan, S. Role of magnetite and humic acid in radionuclide migration in the environment. J. Contam. Hydrol. 2009, 106, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Çelebi, O.; Erten, H.N. Adsorption Behavior of Radionuclides, 137Cs and 140Ba, onto Solid Humic Acid. In Survival and Sustainability, Environmental Earth Sciences; Gökçekus¸, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1065–1085. [Google Scholar] [CrossRef]
- Berns, A.E.; Flath, A.; Mehmood, K.; Hofmann, D.; Jacques, D.; Sauter, M.; Vereecken, H.; Engelhardt, I. Numerical and Experimental Investigations of Cesium and Strontium Sorption and Transport in Agricultural Soils. Vadose Zone J. 2017, 17, 170126. [Google Scholar] [CrossRef] [Green Version]
- Sposito, G. The Chemistry of Soils; Oxford University Press: New York, NY, USA; Oxford, UK, 1989; p. 279. [Google Scholar]
- Perdue, E.M. Acidic functional groups of humic substances. In Humic Substances in Soil, Sediments and Water; Aiken, G.R., Ed.; John Wiley: New York, NY, USA, 1985; pp. 493–526. [Google Scholar]
- Hayes, M.S.B. Influence of the acid/base status on the formation and interaction of acids and bases in soils. In Proceedings of the Transaction of the 13 Congress of the International Society of Soil Science, Hamburg, Germany, 13–20 August 1986; pp. 93–109. [Google Scholar]
- Senesi, N.; Loffredo, E. The Chemistry of Soil Organic Matter. In Soil Physical Chemistry; Sparks Donald, L., Ed.; CRC Press: Boca Raton, FL, USA; Boston, MA, USA; London, UK; New York, NY, USA; Washington, DC, USA, 1998; pp. 239–271. [Google Scholar]
- Helal, A.A.; Helal, A.; Salim, N.Z.; Khalifa, S.M. Sorption of radionuclides on peat humin. J. Radioanal. Nucl. Chem. 2006, 267, 363–368. [Google Scholar] [CrossRef]
- Buckau, G. Effects of Humic Substances on the Migration of Radionuclides: Complexation and Transport of Actinides. In Second Technical Progress Report; Institut für Nukleare Entsorgungstechnik: Germany, Karlsruhe, 1999; p. 408. [Google Scholar]
- Tanaka, T.; Nagao, S.; Sakamoto, Y.; Ohnuki, T.; Ni, S.; Senoo, M. Distribution Coefficient in the Sorption of Radionuclides onto Ando Soil in the Presence of Humic Acid/Influence of the Molecular Size of Humic Acid. J. Nucl. Sci. Technol. 1997, 34, 829–834. Available online: https://www.tandfonline.com/loi/tnst20 (accessed on 10 November 2021). [CrossRef]
- Chesnokov, N.V.; Mikova, N.M.; Ivanov, I.P.; Kuznetsov, B.N. Obtaining carbon sorbents by chemical modification of fossil coals and plant biomass. J. Sib. Fed. Univ. Chem. 2014, 7, 42–53. [Google Scholar]
- Sparks, D.L. Environmental Soil Chemistry; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
Samples | Chlorite | Smectite | Illite | Kaolinite | Quartz | Feldspar | Plagioclase | Siderite | Ankerite | Magnetite | Pyrite | Organic Matter |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hard coal | 0.6 | - | - | 6.5 | 1.9 | - | - | 0.3 | 0.1 | 0.2 | - | 90.4 |
Brown coal | 0.4 | 4.9 | 1.5 | 11.3 | 2.8 | 1 | 0.1 | - | - | - | - | 78 |
Peat | 0.6 | - | 1.6 | - | 9 | 0.7 | 1.1 | - | - | - | - | 87 |
Shungite | - | - | 0.2 | - | 0.6 | - | - | - | - | - | 0.1 | 99.1 |
Sample Name | LOI | Na2O | MgO | Al2O3 | SiO2 | K2O | CaO | TiO2 | MnO | Fe2O3 | P2O5 | SO3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hard coal | 90.40 | 0.09 | 0.09 | 3.10 | 5.01 | 0.08 | 0.14 | 0.17 | 0.01 | 0.61 | 0.04 | 0.61 |
Brown coal | 78.00 | 0.06 | 0.26 | 6.44 | 11.59 | 0.34 | 1.10 | 0.19 | 0.05 | 1.70 | 0.01 | 0.52 |
Peat | 87.00 | 0.09 | 0.08 | 1.99 | 8.89 | 0.25 | 0.12 | 0.09 | 0.01 | 1.19 | 0.23 | 0.07 |
Shungite | 99.07 | 0.07 | 0.01 | 0.05 | 0.27 | 0.04 | 0.01 | 0.00 | <0.005 | 0.06 | 0.01 | 0.24 |
Sample | N | C | S | H | Sum | H:C |
---|---|---|---|---|---|---|
Hard coal | 2.19 | 70.20 | 0.82 | 4.17 | 77.37 | 0.71 |
Brown coal | 0.54 | 52.36 | 0.66 | 4.81 | 58.38 | 1.09 |
Peat | 1.29 | 45.35 | 0.45 | 5.01 | 52.09 | 1.31 |
Shungite | 0.74 | 90.54 | 0.64 | 2.83 | 94.75 | 0.34 |
Sample | pHITP | Total Buffering, mmol/m2 | |
---|---|---|---|
To Acid (pHITP-pH 3.25) | To Base (pHITP-pH 10) | ||
Hard coal | 7.08 | 1.34 | 17.35 |
Brown coal | 4.76 | 94.93 | 320.95 |
Peat | 3.17 | - | 489.54 |
Shungite | 6.12 | 1.04 | 1.99 |
Sample | CEC meq/100 g | Specific Surface Area SBET, m2/g | Pores Volume/Average Diameter, nm | Volume of Microspores, sm3/g (T-Method Halsey) |
---|---|---|---|---|
Hard coal | 4.6 | 41.3 | 0.049/5.300 | 0.014 |
Brown coal | 18.2 | 8.7 | 0.027/5.70 | - |
Peat | 8.8 | 5.5 | 0.013/3.79 | - |
Shungite | 1.0 | 18.2 | 0.025/3.54 | 0.010 |
Sample | mmol eq/m2 | |
---|---|---|
Cs (I) | Sr (II) | |
Hard coal | 0.029 ± 0.002 | 0.308 ± 0.025 |
Brown coal | 0.435 ± 0.078 | 2.544 ± 0.458 |
Peat | 0.326 ± 0.058 | 3.902 ± 0.702 |
Shungite | 0.029 ± 0.002 | 0.80 ± 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belousov, P.; Semenkova, A.; Izosimova, Y.; Tolpeshta, I.; Romanchuk, A.; Zakusin, S.; Tyupina, E.; Krupskaya, V. Sorption of 137Cs and 90Sr on Organic Sorbents. Appl. Sci. 2021, 11, 11531. https://doi.org/10.3390/app112311531
Belousov P, Semenkova A, Izosimova Y, Tolpeshta I, Romanchuk A, Zakusin S, Tyupina E, Krupskaya V. Sorption of 137Cs and 90Sr on Organic Sorbents. Applied Sciences. 2021; 11(23):11531. https://doi.org/10.3390/app112311531
Chicago/Turabian StyleBelousov, Petr, Anna Semenkova, Yulia Izosimova, Inna Tolpeshta, Anna Romanchuk, Sergey Zakusin, Ekaterina Tyupina, and Victoria Krupskaya. 2021. "Sorption of 137Cs and 90Sr on Organic Sorbents" Applied Sciences 11, no. 23: 11531. https://doi.org/10.3390/app112311531
APA StyleBelousov, P., Semenkova, A., Izosimova, Y., Tolpeshta, I., Romanchuk, A., Zakusin, S., Tyupina, E., & Krupskaya, V. (2021). Sorption of 137Cs and 90Sr on Organic Sorbents. Applied Sciences, 11(23), 11531. https://doi.org/10.3390/app112311531