Experimental and Numerical Study of Thermal Performance of an Innovative Waste Heat Recovery System
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Design of the Heat Pipe Heat Recovery System
2.2. Experimental Setup
2.3. Numerical Simulations
3. Results
3.1. Experimental Results
3.2. Numerical Simulations Results
3.3. The Efficiency of the Equipment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclatures
HPHE | Heat pipe heat recovery system |
TEv,1 | Temperature of the primary agent at the inlet of the evaporator [°C] |
TCo,1 | Temperature of the secondary agent at the inlet of the condenser [°C] |
q1 | Volume flow rate of the primary agent [L/min] |
q2 | Volume flow rate of the secondary agent [L/min] |
CH1 | Thermal sensor at the inlet of the evaporator |
CH2 | Thermal sensor at the inlet of the condenser |
CH3 | Thermal sensor at the outlet of the condenser |
T | Time [min] |
λ | Thermal conductivity [W/m*K] |
ε | Thermal effectiveness of the HPHE [%] |
Q | Heat transfer rate of the HPHE [W] |
Qmax | Maximum theoretical heat transfer rate of the HPHE [W] |
Cev | Heat capacity rate of the evaporator [W/K] |
TEv,2 | Temperature of the primary agent at the outlet of the evaporator [°C] |
Cco | Heat capacity rate of the condenser [W/K] |
TCo,2 | Temperature of the secondary agent at the outlet of the condenser [°C] |
ṁEv | Mass flow rate of the primary agent [kg/m3] |
ṁCo | Mass flow rate of the secondary agent [kg/m3] |
Cp,Ev | Specific heat of the primary agent [J/kg*K] |
Cp,Co | Specific heat of the secondary agent [J/kg*K] |
Cmin | Minimum heat capacity rate between the two fluids [W/K] |
References
- Firth, A.; Zhang, B.; Yang, A. Quantification of global waste heat and its environmental effects. Appl. Energy 2019, 235, 1314–1334. [Google Scholar] [CrossRef]
- Men, Y.; Liu, X.; Zhang, T. A review of boiler waste heat recovery technologies in the medium-low temperature range. Energy 2021, 237, 121560. [Google Scholar] [CrossRef]
- Termtech. Reducing Energy Costs with Economisers. Available online: https://thermtech.co.uk/reducing-energy-costs-with-economisers/ (accessed on 25 November 2021).
- Arsenyeva, O.; Klemes, J.J.; Kapustenko, P.; Fedorenko, O.; Kusakov, S.; Kobylnik, D. Plate heat exchanger design for the utilisation of waste heat from exhaust gases of drying process. Energy 2021, 233, 121186. [Google Scholar] [CrossRef]
- Xie, C.Y.; Tao, H.Z.; Li, W.; Cheng, J.J. Numerical simulation and experimental investigation of heat pipe heat exchanger applied in residual heat removal system. Ann. Nucl. Energy 2019, 133, 568–579. [Google Scholar] [CrossRef]
- Jouhara, H.; Khordehgah, N.; Almahmoud, S.; Delpech, B. Waste heat recovery technologies and applications. Therm. Sci. Eng. Prog. 2018, 6, 268–289. [Google Scholar] [CrossRef]
- Asl, S.G.; Gilandeh-Abbaspour, Y. Theoretical and practical analysis of waste heat recovery system in off-season rainbow trout production. Aquac. Eng. 2019, 85, 65–73. [Google Scholar] [CrossRef]
- Liang, Y.; Bian, X.; Qian, W.; Pan, M.; Ban, Z.; Yu, Z. Theoretical analysis of a regenerative supercritical carbon dioxide Brayton cycle/organic Rankine cycle dual loop for waste heat recovery of a diesel/natural gas dual-fuel engine. Energy Convers. Manag. 2019, 197, 111845. [Google Scholar] [CrossRef]
- Gao, H.; Liu, Y.; Song, X.; Zheng, B.; Sun, P.; Lu, M.; Ma, Y.; Gao, Z. Numerical study of heat transfer characteristics of semi-coke and steam in waste heat recovery steam generator for hydrogen production. Int. J. Hydrogen Energy 2019, 44, 25160–25168. [Google Scholar] [CrossRef]
- Jayanthi, N.; Suresh Kumar, R.; Karunakaran, G.; Venkatesh, M. Experimental investigation on the thermal performance of heat pipe solar collector (HPSC). Mater. Today Proc. 2020, 26, 3569–3575. [Google Scholar] [CrossRef]
- Abd-Elhady, M.S.; Nasreldin, M.A.; El-Sheikh, M.N. Improving the performance of evacuated tube heat pipe collectors using oil and foamed metals. Ain Shams Eng. J. 2018, 9, 2683–2689. [Google Scholar] [CrossRef]
- Brahim, T.; Dhaou, M.H.; Jemni, A. Theoretical and experimental investigation of plate screen mesh heat pipe solar collector. Energy Convers. Manag. 2014, 87, 428–438. [Google Scholar] [CrossRef]
- Dehaj, M.S.; Mohiabadi, M.Z. Experimental investigation of heat pipe solar collector using MgO nanofluids. Sol. Energy Mater. Sol. Cells 2019, 191, 91–99. [Google Scholar] [CrossRef]
- Yang, L.; Ling, X.; Peng, H.; Duan, L.; Chen, X. Starting characteristics of a novel high temperature flat heat pipe receiver in solar power tower plant based of “Flat-front” Startup model. Energy 2019, 183, 936–945. [Google Scholar] [CrossRef]
- Burlacu, A.; Lăzărescu, C.D.; Ciocan, V.; Verdes, M.; Balan, M.C.; Serbanoiu, A.A. CFD Heat transfer analysis for heat pipes integration into buildings with glazed facades. Procedia Eng. 2017, 181, 658–665. [Google Scholar] [CrossRef]
- Mahajan, G.; Thompson, S.M.; Cho, H. Energy and cost savings potential of oscillating heat pipes for waste heat recovery ventilation. Energy Rep. 2017, 3, 46–53. [Google Scholar] [CrossRef]
- Jouhara, H.; Anastasov, V.; Khamis, I. Potential of heat pipe technology in nuclear seawater desalination. Desalination 2019, 249, 1055–1061. [Google Scholar] [CrossRef] [Green Version]
- Tian, E.; He, Y.L.; Tao, W.Q. Research on a new type waste heat recovery gravity heat pipe exchanger. Appl. Energy 2017, 188, 586–594. [Google Scholar] [CrossRef]
- Xiaoxing, H.; Yaxiong, W. Experimental investigation of the thermal performance of a novel concentric tube heat pipe heat exchanger. Int. J. Heat Mass Transf. 2018, 127, 1338–1342. [Google Scholar]
- Vizitiu, R.S.; Sosoi, G.; Burlacu, A.; Turcanu, F.E. CFD Analysis of a Dual Heat Recovery System. E3S Web Conf. 2019, 85, 02007. [Google Scholar] [CrossRef] [Green Version]
- Vizitiu, R.S.; Burlacu, A.; Isopescu, D.N.; Verdes, M.; Sosoi, G.; Lazarescu, C.D. CFD analysis of an innovative heat recovery system. Procedia Manuf. 2019, 32, 488–495. [Google Scholar] [CrossRef]
- Delpech, B.; Milani, M.; Montorsi, L.; Boscardin, D.; Chauhan, A.; Almahmoud, S.; Axcell, B.; Jouhara, H. Energy efficiency enhancement and waste heat recovery in industrial processes by means of the heat pipe technology: Case of the ceramic industry. Energy 2018, 158, 656–665. [Google Scholar] [CrossRef]
- Delpech, B.; Axcell, B.; Jouhara, H. Experimental investigation of a radiative heat pipe for waste heat recovery in a ceramics kiln. Energy 2019, 170, 636–651. [Google Scholar] [CrossRef]
- Jouhara, H.; Almahmoud, S.; Chauhan, A.; Delpech, B.; Bianchi, G.; Tassou, S.A.; Llera, R.; Lago, F.; Arribas, J.J. Experimental and theoretical investigation of a flat heat pipe heat exchanger for waste heat recovery in the steel industry. Energy 2017, 141, 1928–1939. [Google Scholar] [CrossRef]
Component | Height [m] | Diameter [m] |
---|---|---|
Evaporator | 0.395 | 0.25 |
Condenser | 0.64 | 0.25 |
Separation flange | 0.005 | 0.246 |
Discs | 0.005 | 0.15 |
Rings | 0.005 | 0.246 |
Heat pipes | 1 | 0.015 |
TEv,1 [°C] | TCo,1 [°C] | q1 [L/min] | q2 [L/min] | |
---|---|---|---|---|
Test no. 1 | 60 | 10 | 1 | 24 |
Test no. 2 | 60 | 10 | 2 | 24 |
Test no. 3 | 60 | 10 | 3 | 24 |
Test no. 4 | 65 | 10 | 1 | 24 |
Test no. 5 | 65 | 10 | 2 | 24 |
Test no. 6 | 65 | 10 | 3 | 24 |
Test no. 7 | 70 | 10 | 1 | 24 |
Test no. 8 | 70 | 10 | 2 | 24 |
Test no. 9 | 70 | 10 | 3 | 24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vizitiu, R.S.; Burlacu, A.; Abid, C.; Verdes, M.; Balan, M.C.; Branoaea, M. Experimental and Numerical Study of Thermal Performance of an Innovative Waste Heat Recovery System. Appl. Sci. 2021, 11, 11542. https://doi.org/10.3390/app112311542
Vizitiu RS, Burlacu A, Abid C, Verdes M, Balan MC, Branoaea M. Experimental and Numerical Study of Thermal Performance of an Innovative Waste Heat Recovery System. Applied Sciences. 2021; 11(23):11542. https://doi.org/10.3390/app112311542
Chicago/Turabian StyleVizitiu, Robert Stefan, Andrei Burlacu, Cherifa Abid, Marina Verdes, Marius Costel Balan, and Marius Branoaea. 2021. "Experimental and Numerical Study of Thermal Performance of an Innovative Waste Heat Recovery System" Applied Sciences 11, no. 23: 11542. https://doi.org/10.3390/app112311542
APA StyleVizitiu, R. S., Burlacu, A., Abid, C., Verdes, M., Balan, M. C., & Branoaea, M. (2021). Experimental and Numerical Study of Thermal Performance of an Innovative Waste Heat Recovery System. Applied Sciences, 11(23), 11542. https://doi.org/10.3390/app112311542