Synthetic Approaches, Modification Strategies and the Application of Quantum Dots in the Sensing of Priority Pollutants
Abstract
:1. Introduction
2. Quantum Dots in Sensing Applications
2.1. Semiconductor Quantum Dots
2.2. Carbon Quantum Dots
2.3. Graphene Quantum Dots
3. Effect of Surface Chemistry on Sensitivity and Selectivity
4. Nanocomposite as Sensors
4.1. Mesoporous-Silica-Coated-QD Composites
4.2. QD–GO Composites/Hybrids
5. Detection Mechanisms
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ji, Y.; Huang, W.; Lu, X.; Feng, X.; Yang, Z. Theoretical limit of energy consumption for removal of organic contaminants in US EPA Priority Pollutant List by NRTL, UNIQUAC and Wilson models. Fluid Phase Equilibria 2010, 297, 210–214. [Google Scholar] [CrossRef]
- Nsibande, S.; Montaseri, H.; Forbes, P. Advances in the application of nanomaterial-based sensors for detection of polycyclic aromatic hydrocarbons in aquatic systems. TrAC Trends Anal. Chem. 2019, 115, 52–69. [Google Scholar] [CrossRef]
- Chatterjee, S.; Deb, U.; Datta, S.; Walther, C.; Gupta, D.K. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation. Chemosphere 2017, 184, 438–451. [Google Scholar] [CrossRef]
- Adegoke, O.; Montaseri, H.; Nsibande, S.A.; Forbes, P.B. Alloyed quaternary/binary core/shell quantum dot-graphene oxide nanocomposite: Preparation, characterization and application as a fluorescence “switch ON” probe for environmental pollutants. J. Alloys Compd. 2017, 720, 70–78. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Lei, Y. Fluorescence based explosive detection: From mechanisms to sensory materials. Chem. Soc. Rev. 2015, 44, 8019–8061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebedev, A.T. Environmental mass spectrometry. Annu. Rev. Anal. Chem. 2013, 6, 163–189. [Google Scholar] [CrossRef]
- Li, H.; Wang, L. Highly Selective Detection of Polycyclic Aromatic Hydrocarbons Using Multifunctional Magnetic–Luminescent Molecularly Imprinted Polymers. ACS Appl. Mater. Interfaces 2013, 5, 10502–10509. [Google Scholar] [CrossRef]
- Bapat, G.; Labade, C.; Chaudhari, A.; Zinjarde, S. Silica nanoparticle based techniques for extraction, detection, and degradation of pesticides. Adv. Colloid Interface Sci. 2016, 237, 1–14. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, L.; Sun, D.; Lan, H.; Fu, H.; Yang, T.; She, Y.; Ni, C. “Turn-off” fluorescent data array sensor based on double quantum dots coupled with chemometrics for highly sensitive and selective detection of multicomponent pesticides. Anal. Chim. Acta 2016, 916, 84–91. [Google Scholar] [CrossRef]
- Zhou, Z.; Lu, J.; Wang, J.; Zou, Y.; Liu, T.; Zhang, Y.; Liu, G.; Tian, Z. Trace detection of polycyclic aromatic hydrocarbons in environmental waters by SERS. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 234, 118250. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Dong, R.; Li, P.; Li, S.; Ge, M.; Zhang, Y.; Yang, L.; Xu, W. A novel SERS selective detection sensor for trace trinitrotoluene based on meisenheimer complex of monoethanolamine molecule. Talanta 2020, 218, 121157. [Google Scholar] [CrossRef]
- Jiang, N.; Li, G.; Che, W.; Zhu, D.; Su, Z.; Bryce, M.R. Polyurethane derivatives for highly sensitive and selective fluorescence detection of 2, 4, 6-trinitrophenol (TNP). J. Mater. Chem. C 2018, 6, 11287–11291. [Google Scholar] [CrossRef]
- Yi, K.-Y. Application of CdSe quantum dots for the direct detection of TNT. Forensic Sci. Int. 2016, 259, 101–105. [Google Scholar] [CrossRef]
- May, B.M.; Parani, S.; Oluwafemi, O.S. Detection of ascorbic acid using green synthesized AgInS2 quantum dots. Mater. Lett. 2019, 236, 432–435. [Google Scholar] [CrossRef]
- Tsolekile, N.; Parani, S.; Matoetoe, M.C.; Songca, S.P.; Oluwafemi, O.S. Evolution of ternary I–III–VI QDs: Synthesis, characterization and application. Nano-Struct. Nano-Objects 2017, 12, 46–56. [Google Scholar] [CrossRef]
- Zikalala, N.Z.; Sundararajan, P.; Tsolekile, N.; Oluwafemi, O.S. Facile green synthesis of ZnInS quantum dots: Temporal evolution of its optical properties and cell viability against normal and cancerous cells. J. Mater. Chem. C 2020, 8, 9329–9336. [Google Scholar] [CrossRef]
- Li, J.; Li, P.; Wang, D.; Dong, C. One-pot synthesis of aqueous soluble and organic soluble carbon dots and their multi-functional applications. Talanta 2019, 202, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Ncube, S.; Madikizela, L.; Cukrowska, E.; Chimuka, L. Recent advances in the adsorbents for isolation of polycyclic aromatic hydrocarbons (PAHs) from environmental sample solutions. TrAC Trends Anal. Chem. 2018, 99, 101–116. [Google Scholar] [CrossRef]
- Ncapayi, V.; Oluwafemi, S.O.; Songca, S.P.; Kodama, T. Optical and cytotoxicity properties of water soluble type II CdTe/CdSe nanoparticles synthesised via a green method. MRS Online Proc. Libr. Arch. 2015, 1748, 69–75. [Google Scholar] [CrossRef]
- Ncapayi, V.; Parani, S.; Oluwafemi, O.S. Facile Size Tunable Green Synthesis of Highly Fluorescent Isotropic and Anisotropic CdSe Nanostructures via a Non-phosphine Based Route. J. Clust. Sci. 2017, 28, 2891–2903. [Google Scholar] [CrossRef]
- Shikha, P.; Kang, T.S. Facile and green one pot synthesis of zinc sulphide quantum dots employing zinc-based ionic liquids and their photocatalytic activity. New J. Chem. 2017, 41, 7407–7416. [Google Scholar]
- Sharma, A.; Sharma, R.; Bhatia, N.; Kumari, A. Review on Synthesis, Characterization and Applications of Silver Sulphide Quantum Dots. J. Mater. Sci. Res. Rev. 2021, 7, 42–58. [Google Scholar]
- Yang, L.; Chen, B.; Luo, S.; Li, J.; Liu, R.; Cai, Q. Sensitive detection of polycyclic aromatic hydrocarbons using CdTe quantum dot-modified TiO2 nanotube array through fluorescence resonance energy transfer. Environ. Sci. Technol. 2010, 44, 7884–7889. [Google Scholar] [CrossRef]
- Qian, J.; Hua, M.; Wang, C.; Wang, K.; Liu, Q.; Hao, N.; Wang, K. Fabrication of l-cysteine-capped CdTe quantum dots based ratiometric fluorescence nanosensor for onsite visual determination of trace TNT explosive. Anal. Chim. Acta 2016, 946, 80–87. [Google Scholar] [CrossRef]
- Sharma, V.; Mehata, M.S. Rapid optical sensor for recognition of explosive 2, 4, 6-TNP traces in water through fluorescent ZnSe quantum dots. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 260, 119937. [Google Scholar] [CrossRef]
- Varghese, R.J.; Parani, S.; Adeyemi, O.O.; Remya, V.; Maluleke, R.; Thomas, S.; Oluwafemi, O.S. Green Synthesis of Sodium Alginate Capped-CuInS 2 Quantum Dots with Improved Fluorescence Properties. J. Fluoresc. 2020, 30, 1331–1335. [Google Scholar] [CrossRef]
- Aladesuyi, O.A.; Oluwafemi, O.S. Synthesis strategies and application of ternary quantum dots—in cancer therapy. Nano-Struct. Nano-Objects 2020, 24, 100568. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Q.; Zhang, W.; Mei, S.; He, L.; Zhu, J.; Chen, G.; Guo, R. Microwave-assisted aqueous synthesis of transition metal ions doped ZnSe/ZnS core/shell quantum dots with tunable white-light emission. Appl. Surf. Sci. 2015, 351, 655–661. [Google Scholar] [CrossRef]
- Patel, J.; Jain, B.; Singh, A.K.; Susan, M.A.B.H.; Jean-Paul, L. Mn-Doped ZnS Quantum dots–An EffectiveNanoscale Sensor. Microchem. J. 2020, 105, 104755. [Google Scholar] [CrossRef]
- Mubiayi, K.P.; Neto, D.M.G.; Morais, A.; Nogueira, H.P.; de Almeida Santos, T.E.; Mazon, T.; Moloto, N.; Moloto, M.J.; Freitas, J.N. Microwave assisted synthesis of CuInGaSe2 quantum dots and spray deposition of their composites with graphene oxide derivatives. Mater. Chem. Phys. 2020, 242, 122449. [Google Scholar] [CrossRef]
- Kays, J.C.; Saeboe, A.M.; Toufanian, R.; Kurant, D.E.; Dennis, A.M. Shell-free copper indium sulfide quantum dots induce toxicity in vitro and in vivo. Nano Lett. 2020, 20, 1980–1991. [Google Scholar] [CrossRef]
- Tsolekile, N.; Parani, S.; Vuyelwa, N.; Maluleke, R.; Matoetoe, M.; Songca, S.; Oluwafemi, O.S. Synthesis, structural and fluorescence optimization of ternary Cu–In–S quantum dots passivated with ZnS. J. Lumin. 2020, 227, 117541. [Google Scholar] [CrossRef]
- Maluleke, R.; Parani, S.; Oluwafemi, O.S. Preparation of Graphene oxide-CuInS2/ZnS Quantum dots Nanocomposite as “Turn-On” Fluorescent Probe for the Detection of Polycyclic Aromatic Hydrocarbons in Aqueous Medium. J. Fluoresc. 2021, 31, 1297–1302. [Google Scholar] [CrossRef]
- Jelinek, R. Carbon Quantum Dots; Springer International Publishing: Cham, Switzerland, 2017; pp. 29–46. [Google Scholar]
- Devi, P.; Saini, S.; Kim, K.-H. The advanced role of carbon quantum dots in nanomedical applications. Biosens. Bioelectron. 2019, 141, 111158. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Zhang, M.; Bhandari, B.; Yang, C.-H. Food waste as a carbon source in carbon quantum dots technology and their applications in food safety detection. Trends Food Sci. Technol. 2020, 95, 86–96. [Google Scholar] [CrossRef]
- Boruah, A.; Saikia, M.; Das, T.; Goswamee, R.L.; Saikia, B.K. Blue-emitting fluorescent carbon quantum dots from waste biomass sources and their application in fluoride ion detection in water. J. Photochem. Photobiol. B Biol. 2020, 209, 111940. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Y.; Liu, W.; Ni, Y.; Hou, Q. Corncob residues as carbon quantum dots sources and their application in detection of metal ions. Ind. Crops Prod. 2019, 133, 18–25. [Google Scholar] [CrossRef]
- Pu, Z.-F.; Wen, Q.-L.; Yang, Y.-J.; Cui, X.-M.; Ling, J.; Liu, P.; Cao, Q.-E. Fluorescent carbon quantum dots synthesized using phenylalanine and citric acid for selective detection of Fe3+ ions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 229, 117944. [Google Scholar] [CrossRef]
- Qu, F.; Li, H. Selective molecular recognition of polycyclic aromatic hydrocarbons using CdTe quantum dots with cyclodextrin as supramolecular nano-sensitizers in water. Sens. Actuators B Chem. 2009, 135, 499–505. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Z.; He, Y.; Lin, H.; Sheng, P.; Liu, C.; Luo, S.; Cai, Q. L-cysteine-capped CdTe QD-based sensor for simple and selective detection oftrinitrotoluene. Nanotechnology 2010, 21, 125502. [Google Scholar] [CrossRef]
- Hu, Y.; Gao, Z. Sewage sludge in microwave oven: A sustainable synthetic approach toward carbon dots for fluorescent sensing of para-Nitrophenol. J. Hazard. Mater. 2020, 382, 121048. [Google Scholar] [CrossRef]
- Cheng, F.; An, X.; Zheng, C.; Cao, S. Green synthesis of fluorescent hydrophobic carbon quantum dots and their use for 2, 4, 6-trinitrophenol detection. RSC Adv. 2015, 5, 93360–93363. [Google Scholar] [CrossRef]
- Haque, E.; Kim, J.; Malgras, V.; Reddy, K.R.; Ward, A.C.; You, J.; Bando, Y.; Hossain, M.S.A.; Yamauchi, Y. Recent advances in graphene quantum dots: Synthesis, properties, and applications. Small Methods 2018, 2, 1800050. [Google Scholar] [CrossRef]
- Ye, R.; Xiang, C.; Lin, J.; Peng, Z.; Huang, K.; Yan, Z.; Cook, N.P.; Samuel, E.L.; Hwang, C.-C.; Ruan, G. Coal as an abundant source of graphene quantum dots. Nat. Commun. 2013, 4, 2943. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wu, X.; Sun, S.; Ma, L.; Zhang, L.; Lin, H. A facile and high-efficient approach to yellow emissive graphene quantum dots from graphene oxide. Carbon 2017, 124, 342–347. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, J.; Zhang, X.; Li, N.; Liu, B.; Li, Y.; Wang, Y.; Wang, W.; Li, Y.; Zhang, L. Large-scale and controllable synthesis of graphene quantum dots from rice husk biomass: A comprehensive utilization strategy. ACS Appl. Mater. Interfaces 2016, 8, 1434–1439. [Google Scholar] [CrossRef] [PubMed]
- Na, W.; Liu, X.; Pang, S.; Su, X. Highly sensitive detection of 2, 4, 6-trinitrophenol (TNP) based on lysozyme capped CdS quantum dots. RSC Adv. 2015, 5, 51428–51434. [Google Scholar] [CrossRef]
- Roy, P.; Periasamy, A.P.; Chuang, C.; Liou, Y.-R.; Chen, Y.-F.; Joly, J.; Liang, C.-T.; Chang, H.-T. Plant leaf-derived graphene quantum dots and applications for white LEDs. New J. Chem. 2014, 38, 4946–4951. [Google Scholar] [CrossRef]
- Suryawanshi, A.; Biswal, M.; Mhamane, D.; Gokhale, R.; Patil, S.; Guin, D.; Ogale, S. Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on–off–on probe for Ag+ ions. Nanoscale 2014, 6, 11664–11670. [Google Scholar] [CrossRef]
- Nirala, N.R.; Khandelwal, G.; Kumar, B.; Prakash, R.; Kumar, V. One step electro-oxidative preparation of graphene quantum dots from wood charcoal as a peroxidase mimetic. Talanta 2017, 173, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Kalita, H.; Mohapatra, J.; Pradhan, L.; Mitra, A.; Bahadur, D.; Aslam, M. Efficient synthesis of rice based graphene quantum dots and their fluorescent properties. RSC Adv. 2016, 6, 23518–23524. [Google Scholar] [CrossRef]
- Wang, L.; Li, W.; Wu, B.; Li, Z.; Wang, S.; Liu, Y.; Pan, D.; Wu, M. Facile synthesis of fluorescent graphene quantum dots from coffee grounds for bioimaging and sensing. Chem. Eng. J. 2016, 300, 75–82. [Google Scholar] [CrossRef]
- Dervishi, E.; Ji, Z.; Htoon, H.; Sykora, M.; Doorn, S.K. Raman spectroscopy of bottom-up synthesized graphene quantum dots: Size and structure dependence. Nanoscale 2019, 11, 16571–16581. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Mariana, L.T.; Phan, A.N. Biomass-waste derived graphene quantum dots and their applications. Carbon 2018, 140, 77–99. [Google Scholar] [CrossRef] [Green Version]
- Kaur, M.; Mehta, S.K.; Kansal, S.K. Nitrogen doped graphene quantum dots: Efficient fluorescent chemosensor for the selective and sensitive detection of 2, 4, 6-trinitrophenol. Sens. Actuators B Chem. 2017, 245, 938–945. [Google Scholar] [CrossRef]
- Chen, S.; Song, Y.; Shi, F.; Liu, Y.; Ma, Q. Sensitive detection of picric acid based on creatinine-capped solid film assembled by nitrogen-doped graphene quantum dots and chitosan. Sens. Actuators B Chem. 2016, 231, 634–640. [Google Scholar] [CrossRef]
- Nsibande, S.; Forbes, P. Development of a turn-on graphene quantum dot-based fluorescent probe for sensing of pyrene in water. RSC Adv. 2020, 10, 12119–12128. [Google Scholar]
- Kaur, M.; Mehta, S.K.; Kansal, S.K. A fluorescent probe based on nitrogen doped graphene quantum dots for turn off sensing of explosive and detrimental water pollutant, TNP in aqueous medium. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 180, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Adegoke, O.; Forbes, P.B. l-Cysteine-capped core/shell/shell quantum dot–graphene oxide nanocomposite fluorescence probe for polycyclic aromatic hydrocarbon detection. Talanta 2016, 146, 780–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Shi, F.; Chen, L.; Su, X. Bovine serum albumin coated CuInS2 quantum dots as a near-infrared fluorescence probe for 2, 4, 6-trinitrophenol detection. Talanta 2013, 116, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Ting, S.L.; Ee, S.J.; Ananthanarayanan, A.; Leong, K.C.; Chen, P. Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions. Electrochim. Acta 2015, 172, 7–11. [Google Scholar] [CrossRef]
- Peveler, W.J.; Roldan, A.; Hollingsworth, N.; Porter, M.J.; Parkin, I.P. Multichannel detection and differentiation of explosives with a quantum dot array. ACS Nano 2016, 10, 1139–1146. [Google Scholar] [CrossRef] [PubMed]
- Aswathy, S.; Vaisakh, S.; George, S. Thio amino acids-modified manganese doped ZnS quantum dot probes for the photoluminescent sensing of hazardous nitro aromatics. Mater. Today Proc. 2020, 41, 628–637. [Google Scholar] [CrossRef]
- Freeman, R.; Finder, T.; Bahshi, L.; Gill, R.; Willner, I. Functionalized CdSe/ZnS QDs for the detection of nitroaromatic or RDX explosives. Adv. Mater. 2012, 24, 6416–6421. [Google Scholar] [CrossRef]
- Baslak, C.; Kus, M.; Cengeloglu, Y.; Ersoz, M. A comparative study on fluorescence quenching of CdTe nanocrystals with a serial of polycyclic aromatic hydrocarbons. J. Lumin. 2014, 153, 177–181. [Google Scholar] [CrossRef]
- Mitra, R.; Saha, A. Reduced Graphene Oxide Based “Turn-On” Fluorescence Sensor for Highly Reproducible and Sensitive Detection of Small Organic Pollutants. ACS Sustain. Chem. Eng. 2016, 5, 604–615. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, M.; Tang, X.; Zhu, T.; Zang, Z.; Zeng, X.; Han, S. Luminescent AIZS-GO nanocomposites as fluorescent probe for detecting copper (II) ion. Sens. Actuators B Chem. 2016, 233, 25–30. [Google Scholar] [CrossRef]
- Tyrakowski, C.M.; Snee, P.T. A primer on the synthesis, water-solubilization, and functionalization of quantum dots, their use as biological sensing agents, and present status. Phys. Chem. Chem. Phys. 2014, 16, 837–855. [Google Scholar] [CrossRef] [PubMed]
- Karakoti, A.S.; Shukla, R.; Shanker, R.; Singh, S. Surface functionalization of quantum dots for biological applications. Adv. Colloid Interface Sci. 2015, 215, 28–45. [Google Scholar] [CrossRef] [PubMed]
- Jadoon, T.; Mahmood, T.; Ayub, K. Silver-graphene quantum dots based electrochemical sensor for trinitrotoluene and p-nitrophenol. J. Mol. Liq. 2020, 306, 112878. [Google Scholar] [CrossRef]
- Cayuela, A.; Carrillo-Carrión, C.; Soriano, M.L.; Parak, W.J.; Valcárcel, M. One-step synthesis and characterization of N-doped carbon nanodots for sensing in organic media. Anal. Chem. 2016, 88, 3178–3185. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Dong, W.; Wan, L.; Quan, X. Determination of folic acid via its quenching effect on the fluorescence of MoS 2 quantum dots. Microchim. Acta 2019, 186, 605. [Google Scholar] [CrossRef]
- Hu, F.; Huang, Y.; Zhang, G.; Zhao, R.; Zhang, D. A highly selective fluorescence turn-on detection of hydrogen peroxide and d-glucose based on the aggregation/de-aggregation of a modified tetraphenylethylene. Tetrahedron Lett. 2014, 55, 1471–1474. [Google Scholar] [CrossRef]
- Fan, Y.Z.; Tang, Q.; Liu, S.G.; Yang, Y.Z.; Ju, Y.J.; Xiao, N.; Luo, H.Q.; Li, N.B. A smartphone-integrated dual-mode nanosensor based on novel green-fluorescent carbon quantum dots for rapid and highly selective detection of 2, 4, 6-trinitrophenol and pH. Appl. Surf. Sci. 2019, 492, 550–557. [Google Scholar] [CrossRef]
- Algarra, M.; Campos, B.; Miranda, M.; da Silva, J.C.E. CdSe quantum dots capped PAMAM dendrimer nanocomposites for sensing nitroaromatic compounds. Talanta 2011, 83, 1335–1340. [Google Scholar] [CrossRef]
- Tian, X.; Peng, H.; Li, Y.; Yang, C.; Zhou, Z.; Wang, Y. Highly sensitive and selective paper sensor based on carbon quantum dots for visual detection of TNT residues in groundwater. Sens. Actuators B Chem. 2017, 243, 1002–1009. [Google Scholar] [CrossRef]
- Omanović-Mikličanin, E.; Badnjević, A.; Kazlagić, A.; Hajlovac, M. Nanocomposites: A brief review. Health Technol. 2020, 10, 51–59. [Google Scholar] [CrossRef]
- Walcarius, A. Mesoporous materials and electrochemistry. Chem. Soc. Rev. 2013, 42, 4098–4140. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Xia, Y.; Qiu, J.; Ren, X. Carbon quantum dots embedded mesoporous silica for rapid fluorescent detection of acidic gas. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 206, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.D.; Hamad, W.Y.; MacLachlan, M.J. CdS quantum dots encapsulated in chiral nematic mesoporous silica: New iridescent and luminescent materials. Adv. Funct. Mater. 2014, 24, 777–783. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, C.; Lu, L.; Su, X. A novel aptamer-mediated CuInS 2 quantum dots@ graphene oxide nanocomposites-based fluorescence “turn off–on” nanosensor for highly sensitive and selective detection of kanamycin. RSC Adv. 2016, 6, 10205–10214. [Google Scholar] [CrossRef]
- Li, Z.; Young, R.J.; Wang, R.; Yang, F.; Hao, L.; Jiao, W.; Liu, W. The role of functional groups on graphene oxide in epoxy nanocomposites. Polymer 2013, 54, 5821–5829. [Google Scholar] [CrossRef]
- Pan, Z.; He, L.; Qiu, L.; Korayem, A.H.; Li, G.; Zhu, J.W.; Collins, F.; Li, D.; Duan, W.H.; Wang, M.C. Mechanical properties and microstructure of a graphene oxide–cement composite. Cem. Concr. Compos. 2015, 58, 140–147. [Google Scholar] [CrossRef]
- Huang, Y.-L.; Walker, A.S.; Miller, E.W. A photostable silicon rhodamine platform for optical voltage sensing. J. Am. Chem. Soc. 2015, 137, 10767–10776. [Google Scholar] [CrossRef] [Green Version]
- Lakowicz, J. Mechanisms and dynamics of fluorescence quenching. Princ. Fluoresc. Spectrosc. 2006, 3, 331–351. [Google Scholar]
Semiconductor Sensor | Modifier | Detection Technique | LOD (mol L−1) | Detection Range (mol L−1) | Pollutant/ Analyte | References |
---|---|---|---|---|---|---|
GO-CdSeTeS/ZnS | L-cysteine | Fluorescence | 2.26 × 10−9 µM | 0.1–0.5 × 10−6 | PAHs | [4] |
GO-CdSeTe/ZnSe/ZnS | L-cysteine | Fluorescence | 0.19 mg/L | 0.1–0.5 × 10−6 | PAHs | [60] |
CuInS2 | BSA | Fluorescence | 28 nmol/L | 5.0 × 10−8–3 × 10−6 | Nitro-aromatics | [61] |
CdTe | L-cysteine | [41] | ||||
Fluorescence | 1.1 nM | Nitroaromatics | [73] | |||
CdS | lysozyme | Fluorescence | 0.1 | 5 × 10−7–1.5 × 10−5 | Nitro-aromatics | [48] |
CdTe(S) | polyacrylamide | Fluorescence | 2.1 nmol/L | 0–7.0 × 10−9 | Nitro-aromatics | [74] |
CdTe | (TGA)/CD | Fluorescence | 0.085 µM | 5 × 10−7–7.5 × 10−5 | PAHs | [40] |
CdSe | oleylamine | Fluorescence | 2.1 × 10−8 mol/L | Nitro-aromatics | [75] | |
CdSe/ZnS | 1,4-dihydro-nicotinamide adenine dinucleotide (NADH) | Fluorescence | 0.1 nM | RDX | [76] | |
CQDs | -NH2 | 0.4 µM 27 nM | 1.0 × 10−7–1.58 × 10−5 | [75] | ||
CdSe | PAMAM-G4 dendrimer | 5.5 × 10−8–5.5 × 10−7 | [76] | |||
CQDs | -NH2 | 2.13 × 10−7 | 0–1.0 × 10−6 | [77] | ||
GQDs | Sulfur | 9.3 × 10−8 | 1.0 × 10−7–9.9 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maluleke, R.; Oluwafemi, O.S. Synthetic Approaches, Modification Strategies and the Application of Quantum Dots in the Sensing of Priority Pollutants. Appl. Sci. 2021, 11, 11580. https://doi.org/10.3390/app112411580
Maluleke R, Oluwafemi OS. Synthetic Approaches, Modification Strategies and the Application of Quantum Dots in the Sensing of Priority Pollutants. Applied Sciences. 2021; 11(24):11580. https://doi.org/10.3390/app112411580
Chicago/Turabian StyleMaluleke, Rodney, and Oluwatobi Samuel Oluwafemi. 2021. "Synthetic Approaches, Modification Strategies and the Application of Quantum Dots in the Sensing of Priority Pollutants" Applied Sciences 11, no. 24: 11580. https://doi.org/10.3390/app112411580
APA StyleMaluleke, R., & Oluwafemi, O. S. (2021). Synthetic Approaches, Modification Strategies and the Application of Quantum Dots in the Sensing of Priority Pollutants. Applied Sciences, 11(24), 11580. https://doi.org/10.3390/app112411580