Heat Transfer of Nanomaterial over an Infinite Disk with Marangoni Convection: A Modified Fourier’s Heat Flux Model for Solar Thermal System Applications
Abstract
:1. Introduction
2. Mathematical Formulation
2.1. Conceptual Model
2.2. Governing Equations
3. Solution Procedure
4. Results and Discussion
5. Correlations
6. Concluding Remarks
- The strength of the Lorentzian body increases the thermal and solutal layer thickness but decreases the velocity. This is due to the retardation force exerted by the applied magnetic field.
- The Brownian motion and thermophoresis phenomena improve the heat transfer, but when it comes to the solute, the thermophoresis number increases the mass transfer and the opposite nature is observed for the Brownian number. This is due to the Brownian motion and thermophoresis mechanisms of nanoparticles.
- Thermal energy modulations (ESHS and THS) significantly improve the temperature field, as both modulations supply additional heat into the nanoliquid system.
- A decrease in the thickness of both the thermal and the solute layer is observed as the Lewis number increases.
- Marangoni convection progresses the velocity of the nanomaterial. This is due to the surface tension at the disk surface.
- The Nusselt number is higher in the presence of the Marangoni convection.
- The Nusselt number is found as a maximum for the effect of nanoparticles.
- Sherwood’s number improved by increasing the Lewis number and heat source parameter.
- Quadratic regression is more important than the linear model for both the reduced Nusselt number and the Sherwood number
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Nomenclature
characteristic temperature (K) | |
characteristic nanoparticles volume fraction | |
magnetic field intensity (telsa) | |
Nanoparticles volume fraction | |
specific heat | |
ambient nanoparticle volume fraction | |
nanoparticle volume fraction at the surface of the disk | |
coefficient of Brownian diffusion | |
coefficient of thermophoretic diffusion | |
, H | dimensionless velocities along and direction |
Hartmann number | |
Thermal conductivity | |
Lewis number | |
Marangoni number | |
Thermophoresis number | |
Brownian motion number | |
reduced Nusselt number | |
estimated Nusselt number | |
dimensionless exponential index | |
Prandtl number | |
coefficient of ESHS | |
coefficient of THS | |
dimensionless ESHS number | |
dimensionless THS number | |
Reynolds number | |
Marangoni ratio number | |
reduced Sherwood number | |
estimated Sherwood number | |
temperature | |
ambient temperature | |
temperature at the surface of the disk | |
characteristic radius of the disk | |
velocities along and directions | |
Greek symbols | |
nondimensional thermal and solutal relaxation parameter | |
dimensionless Casson material parameter | |
Constants | |
electrical conductivity | |
dimensionless temperature | |
thermal relaxation time | |
solutal relaxation time | |
dynamic viscosity | |
kinematic viscosity | |
Similarity variable | |
density | |
surface tension | |
constant | |
specific heat ratio | |
scaled nanoparticle volume fraction | |
constant (s−1) |
References
- Choi, S.U.S. Enhancing thermal conductivity of fluids with nanoparticles developments and applications of non-Newtonian fluid flow. ASME FED 1995, 66, 99–105. [Google Scholar]
- Khanafer, K.; Vafai, K.; Lightstone, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 2003, 46, 3639–3653. [Google Scholar] [CrossRef]
- Buongiorno, J. Convective transport in nanofluids. ASME J. Heat Transf. 2006, 128, 240–250. [Google Scholar] [CrossRef]
- Nield, D.A.; Kuznetsov, A. Thermal instability in a porous medium layer saturated by a nanofluid. Int. J. Heat Mass Transf. 2009, 5, 5796–5801. [Google Scholar] [CrossRef]
- Khan, W.A.; Pop, I. Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 2010, 53, 2477–2483. [Google Scholar] [CrossRef]
- Rana, P.; Bhargava, R. Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: A numerical study. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 212–226. [Google Scholar] [CrossRef]
- Kuznetsov, A.V.; Nield, D.A. The Cheng–Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: A revised model. Int. J. Heat Mass Transf. 2013, 65, 682–685. [Google Scholar] [CrossRef]
- Dhanai, R.; Rana, P.; Kumar, L. MHD mixed convection nanofluid flow and heat transfer over an inclined cylinder due to velocity and thermal slip effects: Buongiornos model. Powder Technol. 2016, 288, 140–150. [Google Scholar] [CrossRef]
- Mackolil, J.; Mahanthesh, B. Heat transfer optimization and sensitivity analysis of Marangoni convection in nanoliquid with nanoparticle interfacial layer and cross-diffusion effects. Int. Commun. Heat Mass Transf. 2021, 126, 105361. [Google Scholar] [CrossRef]
- Mahanthesh, B. Flow and heat transport of nanomaterial with quadratic radiative heat flux and aggregation kinematics of nanoparticles. Int. Commun. Heat Mass Transf. 2021, 127, 105521. [Google Scholar] [CrossRef]
- Skelland, H.P. Non-Newtonian Flow and Heat Transfer; John Wiley: Hoboken, NJ, USA, 1966. [Google Scholar]
- Denn, M.M. Boundary-layer flows for a class of elastic fluids. Chem. Eng. Sci. 1967, 22, 395–405. [Google Scholar] [CrossRef]
- Rajagopal, K.R.; Gupta, A.S.; Wineman, A.S. On a boundary layer theory for non-Newtonian fluids. Appl. Sci. Eng. Lett. 1980, 18, 875–883. [Google Scholar] [CrossRef] [Green Version]
- Eldabe, N.T.M.; Elmohandis, S.M.G. Pulsatile Magnetohydrodynamic Viscoelastic Flow through a Channel Bounded by Two Permeable Parallel Plates. J. Phys. Soc. Jpn. 1995, 64, 4163–4174. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, M.; Hayat, T.; Pop, I.; Aziz, A. Unsteady boundary layer flow of a Casson fluid due to an impulsively started moving flat plate. Heat Transf. Asian Res. 2011, 40, 563–576. [Google Scholar] [CrossRef]
- Nadeem, S.; Haq, R.U.; Lee, C. MHD flow of a Casson fluid over an exponentially shrinking sheet. Sci. Iran. 2012, 19, 1550–1553. [Google Scholar] [CrossRef] [Green Version]
- Eldabe, N.T.M.; Saddeck, G.; El-Sayed, A.F. Heat transfer of MHD non-Newtonian Casson fluid flow between two rotating cylinders. Mech. Mech. Eng. 2001, 5, 237–251. [Google Scholar]
- Gireesha, B.J.; Mahanthesh, B.; Rashidi, M.M. MHD boundary layer heat and mass transfer of a chemically reacting Casson fluid over a permeable stretching surface with non-uniform heat source/sink. Int. J. Ind. Math. 2015, 7, 247–260. [Google Scholar]
- Mahanthesh, B.; Gireesha, B.J.; Shashikumar, N.S.; Hayat, T.; Alsaedi, A. Marangoni convection in Casson liquid flow due to an infinite disk with exponential space dependent heat source and cross-diffusion effects. Results Phys. 2018, 9, 78–85. [Google Scholar] [CrossRef]
- Sohail, M.; Shah, Z.; Tassaddiq, A.; Kumam, P.; Roy, P. Entropy generation in MHD Casson fluid flow with variable heat conductance and thermal conductivity over non-linear bi-directional stretching surface. Sci. Rep. 2020, 10, 12530. [Google Scholar] [CrossRef]
- Oke, A.; Mutuku, W.; Kimathi, M.; Animasaun, I. Insight into the dynamics of non-Newtonian Casson fluid over a rotating non-uniform surface subject to Coriolis force. Nonlinear Eng. 2020, 9, 398–411. [Google Scholar] [CrossRef]
- Tufail, M.N.; Saleem, M.; Chaudhry, Q.A. Chemically reacting mixed convective Casson fluid flow in the presence of MHD and porous medium through group theoretical analysis. Heat Transf. 2020, 29, 4657–4677. [Google Scholar] [CrossRef]
- Anwar, T.; Kumam, P.; Watthayu, W. Unsteady MHD natural convection flow of Casson fluid incorporating thermal radiative flux and heat injection/suction mechanism under variable wall conditions. Sci. Rep. 2021, 11, 4275. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, X. Embedding-Parameters Perturbation Method. Modeling Anal. Mod. Fluid Probl. 2017, 39–77. [Google Scholar] [CrossRef]
- Pearson, J. On convection cells induced by surface tension. J. Fluid Mech. 1958, 4, 489–500. [Google Scholar] [CrossRef]
- Lin, Y.; Zheng, L.; Zhang, X. Magnetohydrodynamics thermocapillary Marangoni convection heat transfer of power-law fluids driven by temperature gradient. J. Heat Transf. 2013, 135, 051702. [Google Scholar] [CrossRef]
- Ibrahim, S.M. Effects of Mass Transfer, Radiation, Joule Heating, and Viscous Dissipation on Steady MHD Marangoni Convection Flow over a Flat Surface with Suction and Injection. Int. J. Eng. Math. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mahanthesh, B.; Gireesha, B.J.; Shashikumar, N.S.; Shehzad, S.A. Marangoni convective MHD flow of SWCNT and MWCNT nanoliquids due to a disk with solar radiation and irregular heat source. Phys. E Low Dimens. Syst. Nanostruct. 2017, 94, 25–30. [Google Scholar] [CrossRef]
- Mahanta, G.; Das, M.; Shaw, S.; Mahala, B.K. MHD Double-diffusive thermosolutal Marangoni convection non-Newtonian Casson fluid flow over a permeable stretchable sheet. Heat Transf. 2020, 49, 1788–1807. [Google Scholar] [CrossRef]
- Shafiq, A.; Rasool, G.; Phali, L.; Khalique, C.M. Thermosoluted Marangoni convective flow towards a permeable Riga surface. Open Phys. 2020, 18, 535–544. [Google Scholar] [CrossRef]
- Kármán, T.V. Über laminare und turbulente Reibung. ZAMM 1921, 1, 233–252. [Google Scholar] [CrossRef] [Green Version]
- Turkyilmazoglu, M. MHD fluid flow and heat transfer due to a stretching rotating disk. Int. J. Therm. Sci. 2012, 51, 195–201. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. MHD fluid flow and heat transfer due to a shrinking rotating disk. Comput. Fluids 2014, 90, 51–56. [Google Scholar] [CrossRef]
- Makinde, O.D.; Mahanthesh, B.; Gireesha, B.J.; Shashikumar, N.S.; Monaledi, R.L.; Tshehla, M.S. MHD Nanofluid Flow Past a Rotating Disk with Thermal Radiation in the Presence of Aluminum and Titanium Alloy Nanoparticles. Defect Diffus. Forum 2018, 384, 69–79. [Google Scholar] [CrossRef]
- Shehzad, S.A.; Mabood, F.; Rauf, A.; Tlili, I. Forced convective Maxwell fluid flow through rotating disk under the thermophoretic particles motion. Int. Commun. Heat Mass Transf. 2020, 116, 104693. [Google Scholar] [CrossRef]
- Rasool, G.; Shafiq, A.; Khalique, C.M. Marangoni forced convective Casson type nanofluid flow in the presence of Lorentz force generated by Riga plate. Discret. Contin. Dyn. Syst. S 2021, 14, 2517–2533. [Google Scholar] [CrossRef]
- Rashid, U.; Baleanu, D.; Liang, H.; Abbas, M.; Iqbal, A.; Rahman, J.U. Marangoni Boundary Layer Flow and Heat Transfer of Graphene–Water Nanofluid with Particle Shape Effects. Processes 2020, 8, 1120. [Google Scholar] [CrossRef]
- Cattaneo, C. Sulla conduzione del calore. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 1948, 3, 83–101. [Google Scholar]
- Christov, C.I. On frame indifferent formulation of the Maxwell—Cattaneo model of finite-speed heat conduction. Mech. Res. Commun. 2009, 36, 481–486. [Google Scholar] [CrossRef]
- Straughan, B. Thermal convection with the Cattaneo—Christov model. Int. J. Heat Mass Transf. 2010, 53, 95–98. [Google Scholar] [CrossRef]
- Ahmad Khan, J.; Mustafa, M.; Hayat, T.; Alsaedi, A. Numerical Study of Cattaneo-Christov Heat Flux Model for Viscoelastic Flow Due to an Exponentially Stretching Surface. PLoS ONE 2015, 10, e0137363. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Alzahrani, F. Transportation of heat through Cattaneo-Christov heat flux model in non-Newtonian fluid subject to internal resistance of particles. Appl. Math. Mech. 2020, 41, 1157–1166. [Google Scholar] [CrossRef]
- Gireesha, B.J.; Shankaralingappa, B.M.; Prasannakumar, B.C.; Nagaraja, B. MHD flow and melting heat transfer of dusty Casson fluid over a stretching sheet with Cattaneo–Christov heat flux model. Int. J. Ambient. Energy 2020. [Google Scholar] [CrossRef]
- Kareem, R.S.; Abdulhadi, A.M. A study of MHD and Darcy-Forchheimer effects on third grade flow with Cattaneo-Christov heat flux. AIP Conf. Proc. 2020, 2292, 020001. [Google Scholar] [CrossRef]
- Kármán, T.V. Uberlaminare und turbulence reibung. Z. Für Angew. Math. Und Mech. 1921, 52, 233–252. [Google Scholar] [CrossRef] [Green Version]
- Wahid, N.S.; Arifin, N.M.; Khashiie, N.S.; Pop, I. Marangoni hybrid nanofluid flow over a permeable infinite disk embedded in a porous medium. Int. Commun. Heat Mass Transf. 2021, 126, 105421. [Google Scholar] [CrossRef]
Ha | Ma | R | Finite Difference Method (FDM) | MATLAB bvp5c Method | Absolute Difference |
---|---|---|---|---|---|
0.5 | 0.5 | 0.4 | −0.216620 | −0.216620 | 0.000000 |
0.7 | −0.206954 | −0.206954 | 0.000000 | ||
0.9 | −0.198161 | −0.198162 | 0.000001 | ||
1.1 | −0.190115 | −0.190116 | 0.000001 | ||
1.3 | −0.182713 | −0.182714 | 0.000001 | ||
0.1 | −0.050179 | −0.050180 | 0.000001 | ||
0.2 | −0.095904 | −0.095904 | 0.000000 | ||
0.3 | −0.138483 | −0.138484 | 0.000001 | ||
0.4 | −0.178583 | −0.178583 | 0.000000 | ||
0.5 | −0.216620 | −0.216620 | 0.000000 | ||
0.2 | −0.216620 | −0.216620 | 0.000000 | ||
0.4 | −0.246955 | −0.246955 | 0.000000 | ||
0.6 | −0.276190 | −0.276190 | 0.000000 | ||
0.8 | −0.304428 | −0.304429 | 0.000001 | ||
1.0 | −0.331755 | −0.331756 | 0.000001 |
Correlations for | ||||
Type | Model | |||
Linear | ||||
Adjusted | 90.9% | Residual Standard Error | 0.117025 | |
Quadratic | ||||
Adjusted | 96.22% | Residual Standard Error | 0.075439 | |
Correlations for | ||||
Type | Model | |||
Linear | ||||
Adjusted | 93.50% | Residual Standard Error | 0.175312 | |
Quadratic | ||||
Adjusted | 97.14% | Residual Standard Error | 0.116279 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basavarajappa, M.; Lorenzini, G.; Narasimhamurthy, S.; Albakri, A.; Muhammad, T. Heat Transfer of Nanomaterial over an Infinite Disk with Marangoni Convection: A Modified Fourier’s Heat Flux Model for Solar Thermal System Applications. Appl. Sci. 2021, 11, 11609. https://doi.org/10.3390/app112411609
Basavarajappa M, Lorenzini G, Narasimhamurthy S, Albakri A, Muhammad T. Heat Transfer of Nanomaterial over an Infinite Disk with Marangoni Convection: A Modified Fourier’s Heat Flux Model for Solar Thermal System Applications. Applied Sciences. 2021; 11(24):11609. https://doi.org/10.3390/app112411609
Chicago/Turabian StyleBasavarajappa, Mahanthesh, Giulio Lorenzini, Srikantha Narasimhamurthy, Ashwag Albakri, and Taseer Muhammad. 2021. "Heat Transfer of Nanomaterial over an Infinite Disk with Marangoni Convection: A Modified Fourier’s Heat Flux Model for Solar Thermal System Applications" Applied Sciences 11, no. 24: 11609. https://doi.org/10.3390/app112411609
APA StyleBasavarajappa, M., Lorenzini, G., Narasimhamurthy, S., Albakri, A., & Muhammad, T. (2021). Heat Transfer of Nanomaterial over an Infinite Disk with Marangoni Convection: A Modified Fourier’s Heat Flux Model for Solar Thermal System Applications. Applied Sciences, 11(24), 11609. https://doi.org/10.3390/app112411609