A Hybrid Nonlinear Active Control Strategy Combining Dry Friction Control and Nonlinear Velocity Compensation Control
Abstract
:1. Introduction
2. Theoretical Aspects
2.1. Governing Motion Equation of a 3-DOF Model
2.2. A Nonlinear Hybrid Control Strategy Combining Dry Friction and Active Control Force
2.2.1. Governing Motion Equation in the First State Space
- ;
- ;
- ;
- ;
- .
2.2.2. Control Law Design in the Second State Space
2.2.3. Stability of the Proposed Nonlinear Control Law
3. Numerical Simulations
3.1. Description of Physical Parameters Employed in the Model
3.2. Simulation Results
3.2.1. Frequency Response
3.2.2. Time Response of Certain Frequencies
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Symbol | Variable Type | Explanation |
---|---|---|
Matrix | Coefficient matrix of active control force | |
Matrix | Distribution matrix of active force | |
Scalar | Friction force | |
Scalar | Active control force on mass | |
Scalar | Excitation force | |
Scalar | Normal force of friction | |
Vector | Active control force vector | |
Vector | State-space active control force vector | |
Vector | Exterior excitation vector | |
Vector | State-space exterior excitation vector | |
Vector | Friction vector | |
Vector | State-space friction vector | |
Scalar | Stiffness coefficient of spring | |
Matrix | Stiffness matrix | |
Matrix | State-space stiffness matrix | |
Scalar | Mass | |
Scalar | Mass of | |
Matrix | Mass matrix | |
Matrix | State-space mass matrix | |
Matrix | Coordinate transformation matrix from physical space to state space | |
Scalar | Physical displacement of mass | |
Vector | Physical displacement vector | |
Scalar | State-space displacement | |
Vector | State-space displacement vector | |
Vector | State-space coordinate of control law | |
Vector | Displacement vector in second state-space | |
Scalar | Power parameter in control law | |
Matrix | Coefficient of friction in control law | |
Scalar | Friction coefficient |
References
- Jaisee, S.; Yue, F.; Ooi, Y.H. A state-of-the-art review on passive friction dampers and their applications. Eng. Struct. 2021, 235, 112022. [Google Scholar] [CrossRef]
- Symans, M.D.; Charney, F.A.; Whittaker, A.S.; Constantinou, M.C.; Kircher, C.A.; Johnson, M.W.; McNamara, R.J. Energy Dissipation Systems for Seismic Applications: Current Practice and Recent Developments. J. Struct. Eng. 2008, 134, 3–21. [Google Scholar] [CrossRef] [Green Version]
- Habibi, A.; Chan, R.W.; Albermani, F. Energy-based design method for seismic retrofitting with passive energy dissipation systems. Eng. Struct. 2013, 46, 77–86. [Google Scholar] [CrossRef]
- Saaed, T.E.; Nikolakopoulos, G.; Jonasson, J.-E.; Hedlund, H. A state-of-the-art review of structural control systems. J. Vib. Control. 2015, 21, 919–937. [Google Scholar] [CrossRef]
- Housner, G.W.; Bergman, L.A.; Caughey, T.K.; Chassiakos, A.G.; Claus, R.O.; Masri, S.F.; Skelton, R.E.; Soong, T.T.; Spencer, B.F.; Yao, J.T.P. Structural Control: Past, Present, and Future. J. Eng. Mech. 1997, 123, 897–971. [Google Scholar] [CrossRef]
- Perkowski, W. Dry friction damper for supercritical drive shaft. J. KONES 2016, 23, 389–396. [Google Scholar] [CrossRef]
- Lenggana, B.W.; Ubaidillah, U.; Imaduddin, F.; Choi, S.-B.; Purwana, Y.M.; Harjana, H. Review of Magnetorheological Damping Systems on a Seismic Building. Appl. Sci. 2021, 11, 9339. [Google Scholar] [CrossRef]
- Mrad, C.; Titirla, M.D.; Larbi, W. Comparison of Strengthening Solutions with Optimized Passive Energy Dissipation Systems in Symmetric Buildings. Appl. Sci. 2021, 11, 10103. [Google Scholar] [CrossRef]
- Sun, Y.; Yuan, J.; Pesaresi, L.; Denimal, E.; Salles, L. Parametric Study and Uncertainty Quantification of the Nonlinear Modal Properties of Frictional Dampers. J. Vib. Acoust. 2020, 142, 1–23. [Google Scholar] [CrossRef]
- Sazhenkov, N.; Semenova, I.; Nikhamkin, M.; Semenov, S. A substructure-based numerical technique and experimental analysis of turbine blades damping with underplatform friction dampers. Procedia Eng. 2017, 199, 820–825. [Google Scholar] [CrossRef]
- Gao, S.; Wang, Y. An Evaluation Method for Dry Friction Damping of Ring Damper in Gas Turbine Engines under Axial Vibration. Aerospace 2021, 8, 302. [Google Scholar] [CrossRef]
- Gastaldi, C.; Gola, M. A Method to Minimize the Effort for Damper–Blade Matching Demonstrated on Two Blade Sizes. Appl. Sci. 2021, 11, 5171. [Google Scholar] [CrossRef]
- Herzog, L.; Augsburg, K. Study on Friction in Automotive Shock Absorbers Part 1: Friction Simulation Using a Dynamic Friction Model in the Contact Zone of an FEM Model. Vehicles 2021, 3, 212–232. [Google Scholar] [CrossRef]
- Grzesikiewicz, W.; Makowski, M. Semi-Active System of Vehicle Vibration Damping. Appl. Sci. 2021, 11, 4577. [Google Scholar] [CrossRef]
- Garrido, H.; Curadelli, O.; Ambrosini, D. Semi-active friction tendons for vibration control of space structures. J. Sound Vib. 2014, 333, 5657–5679. [Google Scholar] [CrossRef]
- Richard, C.; Guyomar, D.; Audigier, D.; Ching, G. Semi-Passive Damping Using Continuous Switching of a Piezoelectric Device; International Society for Optics and Photonics: Bellingham, WA, USA, 1999; pp. 104–111. [Google Scholar]
- Shimomura, M.; Ohzono, T. Ordering of microwrinkle patterns by compressive strain. Phys. Rev. B 2004, 69, 132202. [Google Scholar]
- Ohzono, T.; Shimomura, M. Geometry-Dependent Stripe Rearrangement Processes Induced by Strain on Preordered Microwrinkle Patterns. Langmuir 2005, 21, 7230–7237. [Google Scholar] [CrossRef] [PubMed]
- Ohzono, T.; Watanabe, H.; Vendamme, R.; Kamaga, C.; Kunitake, T.; Ishihara, T.; Shimomura, M. Spatial Forcing of Self-Organized Microwrinkles by Periodic Nanopatterns. Adv. Mater 2007, 19, 3229–3232. [Google Scholar] [CrossRef]
- Ohzono, T.; Monobe, H.; Shiokawa, K.; Fujiwara, M.; Shimizu, Y. Shaping liquid on a micrometer scale using microwrinkles as deformable open channel capillaries. Soft Matter 2009, 5, 4658–4664. [Google Scholar] [CrossRef]
- Ohzono, T.; Monobe, H.; Yamaguchi, R.; Shimizu, Y.; Yokoyama, H. Dynamics of surface memory effect in liquid crystal alignment on reconfigurable microwrinkles. Appl. Phys. Lett. 2009, 95, 14101. [Google Scholar] [CrossRef]
- Ohzono, T.; Fukuda, J. Zigzag line defects and manipulation of colloids in a nematic liquid crystal in microwrinkle grooves. Nat. Commun. 2012, 3, 701. [Google Scholar] [CrossRef]
- Suzuki, K.; Ohzono, T. Wrinkles on a textile-embedded elastomer surface with highly variable friction. Soft Matter 2016, 12, 6176–6183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murashima, M.; Imaizumi, Y.; Murase, R.; Umehara, N.; Tokoroyama, T.; Saito, T.; Takeshima, M. Active friction control in lubrication condition using novel metal morphing surface. Tribol. Int. 2021, 156, 106827. [Google Scholar] [CrossRef]
- Heckl, M.A.; Abrahams, I. Active control of friction-driven oscillations. J. Sound Vib. 1996, 193, 417–426. [Google Scholar] [CrossRef]
- Zhou, X.; Li, X. A Finite-Time Robust Adaptive Sliding Mode Control for Electro-Optical Targeting System with Friction Compensation. IEEE Access 2019, 7, 166318–166328. [Google Scholar] [CrossRef]
- Zou, Q.; Sun, L.; Chen, D.; Wang, K. Adaptive Sliding Mode Based Position Tracking Control for PMSM Drive System with Desired Nonlinear Friction Compensation. IEEE Access 2020, 8, 166150–166163. [Google Scholar] [CrossRef]
- Garrido, H.; Curadelli, O.; Ambrosini, D. Analytical, numerical and experimental studies on the Semi-Active Friction Tendon. Procedia Eng. 2017, 199, 1653–1658. [Google Scholar] [CrossRef]
- Dos Santos, M.B.; Coelho, H.T. Assessment of semi-active friction dampers in auxiliary mass dampers’ suspension. Eng. Struct. 2019, 186, 356–368. [Google Scholar] [CrossRef]
- Menq, C.-H.; Griffin, J.H.; Bielak, J. The Influence of a Variable Normal Load on the Forced Vibration of a Frictionally Damped Structure. J. Eng. Gas Turbines Power 1986, 108, 300–305. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Huang, X.; Yang, X. A Hybrid Nonlinear Active Control Strategy Combining Dry Friction Control and Nonlinear Velocity Compensation Control. Appl. Sci. 2021, 11, 11670. https://doi.org/10.3390/app112411670
Yang D, Huang X, Yang X. A Hybrid Nonlinear Active Control Strategy Combining Dry Friction Control and Nonlinear Velocity Compensation Control. Applied Sciences. 2021; 11(24):11670. https://doi.org/10.3390/app112411670
Chicago/Turabian StyleYang, Donglai, Xingrong Huang, and Xiaodong Yang. 2021. "A Hybrid Nonlinear Active Control Strategy Combining Dry Friction Control and Nonlinear Velocity Compensation Control" Applied Sciences 11, no. 24: 11670. https://doi.org/10.3390/app112411670
APA StyleYang, D., Huang, X., & Yang, X. (2021). A Hybrid Nonlinear Active Control Strategy Combining Dry Friction Control and Nonlinear Velocity Compensation Control. Applied Sciences, 11(24), 11670. https://doi.org/10.3390/app112411670