Application of an Automatic Noise or Signal Removal Algorithm Based on Synchrosqueezed Continuous Wavelet Transform of Passive Surface Wave Imaging: A Case Study in Sichuan, China
Abstract
:1. Introduction
2. Methodology
2.1. Preprocessing
2.2. Thresholding
2.3. Postprocessing
3. The Field Data
4. Field Data Processing
4.1. Preprocessing for Raw Field Data
4.2. Reconstruction of Virtual Shot Gathers by Cross-Correlation
4.3. Post-Processing for Virtual Shot Gathers
4.4. Shear Wave Velocity Profile
5. Discussion
5.1. The Applicability of This Method in Other Passive Seismic Datasets
5.2. The Efficiency of This Method in Processing Passive Seismic Datasets
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wapenaar, K. Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by crosscorrelation. Phys. Rev. Lett. 2004, 93, 254–301. [Google Scholar] [CrossRef] [Green Version]
- Schuster, G.T.; Yu, J.; Sheng, J.; Rickett, J. Interferometric/daylight seismic imaging. Geophys. J. Int. 2004, 157, 838–852. [Google Scholar] [CrossRef]
- Weaver, R.L. Information from Seismic Noise. Science 2005, 307, 1568–1569. [Google Scholar] [CrossRef] [Green Version]
- Snieder, R.; Şafak, E. Extracting the building response using seismic interferometry: Theory and application to the Millikan library in Pasadena, California. Bull. Seismol. Soc. Am. 2006, 96, 586–598. [Google Scholar] [CrossRef] [Green Version]
- Aki, K. Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull. Earthq. Res. Inst. 1957, 35, 415–456. [Google Scholar]
- Claerbout, J.F. Synthesis of a layered medium from its acoustic transmission response. Geophysics 1968, 33, 264–269. [Google Scholar] [CrossRef]
- Nakata, N.; Snieder, R.; Tsuji, T.; Larner, K.; Matsuoka, T. Shear-wave imaging from traffic noise using seismic interferometry by cross-coherence. Geophysics 2011, 76, SA97–SA106. [Google Scholar] [CrossRef] [Green Version]
- Roux, P.; Sabra, K.G.; Gerstoft, P.; Kuperman, W.A. P-waves from cross-correlation of seismic noise. Geophys. Res. Lett. 2005, 32, 1944–8007. [Google Scholar] [CrossRef] [Green Version]
- Forghani, F.; Snieder, R. Underestimation of body waves and feasibility of surface-wave reconstruction by seismic interferometry. Lead. Edge 2010, 29, 790–794. [Google Scholar] [CrossRef]
- Draganov, D.; Wapenaar, K.; Mulder, W.; Singer, J.; Verdel, A. Retrieval of reflections from seismic background-noise measurements. Geophys. Res. Lett. 2007, 34, L04305. [Google Scholar] [CrossRef] [Green Version]
- Draganov, D.; Campman, X.; Thorbecke, J.; Verdel, A.; Wapenaar, K. Reflection images from ambient seismic noise. Geophysics 2009, 74, A63–A67. [Google Scholar] [CrossRef] [Green Version]
- Nakata, N.; Boué, P.; Brenguier, F.; Roux, P.; Ferrazzini, V.; Campillo, M. Body and surface wave reconstruction from seismic noise correlations between arrays at Piton de la Fournaise volcano. Geophys. Res. Lett. 2016, 43, 1047–1054. [Google Scholar] [CrossRef] [Green Version]
- Chamarczuk, M.; Malinowski, M.; Draganov, D. 2D body-wave seismic interferometry as a tool for reconnaissance studies and optimization of passive reflection seismic surveys in hardrock environments. J. Appl. Geophys. 2021, 187, 104288. [Google Scholar] [CrossRef]
- Cheng, F.; Xia, J.H.; Xu, Y.X.; Xu, Z.B.; Pan, Y.D. A new passive seismic method based on seismic interferometry and multichannel analysis of surface waves. J. Appl. Geophys. 2015, 117, 126–135. [Google Scholar] [CrossRef]
- Yang, Y.J.; Ritzwoller, M.H.; Lin, F.C.; Moschetti, M.P.; Shapiro, N.M. Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography. J. Geophys. Res. Solid Earth 2008, 113, B12310. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Chen, Y.S.; Yin, W.W. Three-dimensional crustal model of Shanxi graben from 3D joint inversion of ambient noise surface wave and Bouguer gravity anomalies. Chin. J. Geophys. 2015, 58, 821–831. [Google Scholar] [CrossRef]
- Behm, M.; Leahy, M.; Snieder, R. Retrieval of local surface wave velocities from traffic noise: An example from the La Barge basin (Wyoming). Geophys. Prospect. 2014, 62, 223–243. [Google Scholar] [CrossRef]
- Cheng, F.; Xia, J.H.; Zhang, K.; Zhou, C.J.; Ajo-Franklin, J.B. Phase-weighted slant stacking for surface wave dispersionmeasurement. Geophys. J. Int. 2021, 226, 256–269. [Google Scholar] [CrossRef]
- Wapenaar, K.; Draganov, D.; Robertsson, J.O.A. Seismic Interferometry: History and Present Status; Society of Exploration Geophysicists: Tulsa, OK, USA, 2008; pp. 99–101. [Google Scholar]
- Roberts, J.; Asten, M. A study of near source effects in arraybased (SPAC) microtremor surveys. Geophys. J. Int. 2008, 174, 159–177. [Google Scholar] [CrossRef] [Green Version]
- Claprood, M.; Asten, M.W. Statistical validity control on SPAC microtremor observations recorded with a restricted number of sensors. Bull. Seismol. Soc. Am. 2010, 100, 776–791. [Google Scholar] [CrossRef]
- Park, C.B.; Miller, R.D.; Laflen, D.; Neb, C.; Ivanov, J.; Bennett, B.; Huggins, R. Imaging dispersion curves of passive surface waves. In Proceedings of the SEG 74th Annual International Meeting, Denver, CO, USA, 10–15 October 2004; Society of Exploration Geophysicists: Tulsa, OK, USA, 2004; pp. 1357–1360. [Google Scholar] [CrossRef] [Green Version]
- Feuvre, M.; Joubert, A.; Leparoux, D.; Côte, P. Passive multi-channel analysis of surface waves with cross-correlations and beamforming: Application to a sea dike. J. Appl. Geophys. 2015, 114, 36–51. [Google Scholar] [CrossRef]
- Cheng, F.; Xia, J.H.; Luo, Y.H.; Xu, Z.B.; Wang, L.M.; Shen, C.; Liu, R.F.; Pan, Y.D.; Mi, B.B.; Hu, Y. Multichannel analysis of passive surface waves based on crosscorrelations. Geophysics 2016, 81, EN57–EN66. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Langston, C.A. Automatic noise-removal/signal-removal based on general cross-validation thresholding in synchrosqueezed domain and its application on earthquake data. Geophysics 2017, 82, V211–V227. [Google Scholar] [CrossRef]
- Mallat, S. A Wavelet Tour of Signal Processing, in Wavelet Analysis and Its Applications, 2nd ed.; Academic Press: Salt Lake City, UT, USA, 1999; p. 620. [Google Scholar]
- Swami, A.; Giannakis, G.B. Higher-Order statistics. Signal Process. 1996, 53, 89–91. [Google Scholar] [CrossRef]
- Ravier, P.; Amblard, P.O. Wavelet packets and de-noising based on higher-order-statistics for transient detection. Signal Process. 2001, 81, 1909–1926. [Google Scholar] [CrossRef] [Green Version]
- Donoho, D.L.; Johnstone, I.M. Ideal spatial adaption by wavelet shrinkage. Biometrika 1994, 81, 425–455. [Google Scholar] [CrossRef]
- Donoho, D.L.; Johnstone, I.M. Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 1995, 90, 1200–1224. [Google Scholar] [CrossRef]
- Nason, G.P. Wavelet shrinkage using cross-validation. J. R. Stat. Soc. Ser. B-Stat. Methodol. 1996, 58, 463–479. [Google Scholar] [CrossRef]
- Thakur, G.; Brevdo, E.; Fučkar, N.S.; Wu, H.T. The Synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications. Signal Process. 2013, 93, 1079–1094. [Google Scholar] [CrossRef] [Green Version]
- Draganov, D.; Campman, X.; Thorbecke, J.; Verdel, A.; Wapenaar, K. Seismic exploration-scale velocities and structure from ambient seismic noise (>1 Hz). J. Geophys. Res. Solid Earth 2013, 118, 4345–4360. [Google Scholar] [CrossRef] [Green Version]
- Baig, A.; Campillo, M.; Brenguier, F. Denoising seismic noise cross correlations. J. Geophys. Res. 2009, 114, B08310. [Google Scholar] [CrossRef]
- John, H. Genetic Algorithms and the Optimal Allocation of Trials. SIAM J. Comput. 1973, 2, 88–105. [Google Scholar] [CrossRef]
- Hansen, R.O. Interpretive gridding by anisotropic kriging. Geophysics 1993, 58, 1491–1497. [Google Scholar] [CrossRef]
- Liu, G.F.; Liu, Y.; Meng, X.H.; Liu, L.B.; Su, W.J.; Wang, Y.Z.; Zhang, Z.F. Surface wave and body wave imaging of passive seismic exploration in shallow coverage area application of Inner Mongolia. Chin. J. Geophys. 2021, 64, 937–948. [Google Scholar] [CrossRef]
Parameters Used to Constrain the Initial Model | Parameters Used for Inversion | |||||
---|---|---|---|---|---|---|
Layer Number | Lower Limit of Shear Wave Velocity (m/s) | Upper Limit of Shear Wave Velocity (m/s) | Layer Thickness (m) | Vp/Vs | Density (kg/m3) | Number of Iterations |
1 | 200 | 400 | 10 | 2 | 2 | 10,000 |
2 | 400 | 500 | 20 | |||
3 | 500 | 600 | 30 | |||
4 | 600 | 800 | 50 | |||
5 | 800 | 1000 | 90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, J.; Liu, G.; Liu, Y. Application of an Automatic Noise or Signal Removal Algorithm Based on Synchrosqueezed Continuous Wavelet Transform of Passive Surface Wave Imaging: A Case Study in Sichuan, China. Appl. Sci. 2021, 11, 11718. https://doi.org/10.3390/app112411718
Fang J, Liu G, Liu Y. Application of an Automatic Noise or Signal Removal Algorithm Based on Synchrosqueezed Continuous Wavelet Transform of Passive Surface Wave Imaging: A Case Study in Sichuan, China. Applied Sciences. 2021; 11(24):11718. https://doi.org/10.3390/app112411718
Chicago/Turabian StyleFang, Jie, Guofeng Liu, and Yu Liu. 2021. "Application of an Automatic Noise or Signal Removal Algorithm Based on Synchrosqueezed Continuous Wavelet Transform of Passive Surface Wave Imaging: A Case Study in Sichuan, China" Applied Sciences 11, no. 24: 11718. https://doi.org/10.3390/app112411718
APA StyleFang, J., Liu, G., & Liu, Y. (2021). Application of an Automatic Noise or Signal Removal Algorithm Based on Synchrosqueezed Continuous Wavelet Transform of Passive Surface Wave Imaging: A Case Study in Sichuan, China. Applied Sciences, 11(24), 11718. https://doi.org/10.3390/app112411718