Optimization of Loading Condition for Maxillary Molar Intrusion with Midpalatal Miniscrews by Using Finite Element Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Creation
2.2. Finite Element Models
2.3. Evaluation
- (i)
- A regression line was derived from the data of horizontal displacement of the crown for each hook position. The line can be written as:
- (i)
- x value was calculated by substituting zero for y.
- (ii)
- The x value was defined as the optimal counter load.
2.4. Statistical Analysis
3. Results
3.1. Horizontal and Vertical Displacement
3.2. Optimal Counter Load
3.3. Von Mises Stress Distribution on PDL
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Amount of Required Expansion (mm) | ||||
---|---|---|---|---|
Ap | Mi | Co | ||
0.016″ × 0.022″ | 0.069 | 0.073 | 0.078 | |
Wire size (inch) | 0.019″ × 0.025″ | 0.039 | 0.042 | 0.045 |
0.021″ × 0.025″ | 0.036 | 0.038 | 0.041 |
Appendix B
References
- Shoji-Matsunaga, A.; Ono, T.; Hayashi, M.; Takayanagi, H.; Moriyama, K.; Nakashima, T. Osteocyte regulation of orthodontic force-mediated tooth movement via RANKL expression. Sci. Rep. 2017, 7, 8753. [Google Scholar]
- Miyazaki, T.; Kurimoto, R.; Chiba, T.; Matsumoto, T.; Nakamichi, R.; Tsutsumi, R.; Takada, K.; Yagasaki, R.; Kato, T.; Shishido, K.; et al. Mkx regulates the orthodontic tooth movement via osteoclast induction. J. Bone Miner. Metab. 2021, 39, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Proffit, W.R.; Fields, H.W.; Larson, D.E.; Sarve, D.M. Contemporary Orthodontics, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Perinetti, G.; Varvara, G.; Salini, L.; Tetè, S. Alkaline phosphatase activity in dental pulp of orthodontically treated teeth. Am. J. Orthod. Dentofac. Orthop. 2005, 128, 492–496. [Google Scholar] [CrossRef]
- Baek, M.S.; Choi, Y.J.; Yu, H.S.; Lee, K.J.; Kwak, J.; Park, Y.C. Long-Term Stability of Anterior Open-Bite Treatment by Intrusion of Maxillary Posterior Teeth. Am. J. Orthod. Dentofac. Orthop. 2010, 138, 396.e1–396.e9. [Google Scholar] [CrossRef]
- Alsafadi, A.S.; Alabdullah, M.M.; Saltaji, H.S.; Abdo, A.; Youssef, M. Effect of Molar Intrusion with Temporary Anchorage Devices in Patients with Anterior Open Bite: A Systematic Review. Prog. Orthod. 2016, 17, 9. [Google Scholar] [CrossRef] [Green Version]
- Kucera, J.; Marek, I.; Tycova, H.; Baccetti, T. Molar Height and Dentoalveolar Compensation in Adult Subjects with Skeletal Open Bite. Angle Orthod. 2011, 81, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Park, K.H.; Choi, J.Y.; Kim, K.A.; Kim, S.J.; Chung, K.R.; Kim, S.H. Critical Issues Concerning Biocreative Strategy in Contemporary Temporary Skeletal Anchorage Device Orthodontics: A Narrative Review. Orthod. Craniofac. Res. 2021, 24, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Iscan, H.N.; Sarisoy, L. Comparison of the Effects of Passive Posterior Bite-Blocks with Different Construction Bites on the Craniofacial and Dentoalveolar Structures. Am. J. Orthod. Dentofac. Orthop. 1997, 112, 171–178. [Google Scholar] [CrossRef]
- Saito, I.; Yamaki, M.; Hanada, K. Nonsurgical Treatment of Adult Open Bite Using Edgewise Appliance Combined with High-Pull Headgear and Class III Elastics. Angle Orthod. 2005, 75, 277–283. [Google Scholar] [PubMed]
- Kim, Y.H. Anterior Openbite and Its Treatment with Multiloop Edgewise Archwire. Angle Orthod. 1987, 57, 290–321. [Google Scholar]
- AlMaghlouth, B.; AlMubarak, A.; Almaghlouth, I.; AlKhalifah, R.; Alsadah, A.; Hassan, A. Orthodontic Intrusion Using Temporary Anchorage Devices Compared to Other Orthodontic Intrusion Methods: A Systematic Review. Clin. Cosmet. Investig. Dent. 2021, 13, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Cambiano, A.O.; Janson, G.; Lorenzoni, D.C.; Garib, D.G.; Dávalos, D.T. Nonsurgical Treatment and Stability of an Adult with a Severe Anterior Open-Bite Malocclusion. J. Orthod. Sci. 2018, 7, 2. [Google Scholar] [CrossRef] [PubMed]
- Heravi, F.; Bayani, S.; Madani, A.S.; Radvar, M.; Anbiaee, N. Intrusion of supra-erupted molars using miniscrews: Clinical success and root resorption. Am. J. Orthod. Dentofac. Orthop. 2011, 139, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Hyung, K.D.; Park, Y.C.; Kyung, S.H.; Kim, T.K. The efficient use of midpalatal miniscrew implants. Angle Orthod. 2004, 74, 711–714. [Google Scholar] [PubMed]
- Kuroda, S.; Yamada, K.; Deguchi, T.; Hashimoto, T.; Kyung, H.E.; Takano-Yamamoto, T. Root proximity is a major factor for screw failure in orthodontic anchorage. Angle Orthod. 2007, 131, S68–S73. [Google Scholar] [CrossRef]
- Miyazawa, K.; Kawaguchi, M.; Tabuchi, M.; Goto, S. Accurate Pre-Surgical Determination for Self-Drilling Miniscrew Implant Placement Using Surgical Guides and Cone-Beam Computed Tomography. Eur. J. Orthod. 2010, 32, 735–740. [Google Scholar] [CrossRef] [Green Version]
- Murat, S.; Kamburoğlu, K.; Kılıç, C.; Ozen, T.; Gurbuz, A. Nerve Damage Assessment Following Implant Placement in Human Cadaver Jaws: An Ex Vivo Comparative Study. J. Oral Implantol. 2014, 40, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.W.; Kang, Y.G.; Jeong, H.J.; Park, Y.G. Palatal Temporary Skeletal Anchorage Devices (TSADs): What to Know and How to Do? Orthod. Craniofac. Res. 2021, 24, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Hong, R.K.; Lim, S.M.; Heo, J.M.; Baek, S.H. Orthodontic Treatment of Gummy Smile by Maxillary Total Intrusion with a Midpalatal Absolute Anchorage System. Korean J. Orthod. 2013, 43, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Konosu, N.; Nakamura, M. Dental Anatomy; WALABA Books LLC: Tokyo, Japan, 2014. [Google Scholar]
- Ammer, H.H.; Ngan, P.; Crout, R.J.; Mucino, V.H.; Mukdadi, O.M. Three-dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement. Am. J. Orthod. Dentofac. Orthop. 2011, 139, e59–e71. [Google Scholar] [CrossRef]
- Baumgaertel, S. Quantitative investigation of palatal bone depth and cortical bone thickness for mini-implant placement in adults. Am. J. Orthod. Dentofac. Orthop. 2009, 136, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, H.G.; Boke, F.; Ayali, A. Cone-Beam Computed Tomography Evaluation of the Soft Tissue Thickness and Greater Palatine Foramen Location in the Palate. J. Clin. Periodontol. 2015, 42, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Çifter, M.; Saraç, M. Maxillary Posterior Intrusion Mechanics with Mini-Implant Anchorage Evaluated with the Finite Element Method. Am. J. Orthod. Dentofac. Orthop. 2011, 140, e233–e241. [Google Scholar] [CrossRef]
- Ogasawara, T.; Uezono, M.; Takakuda, K.; Kikuchi, M.; Suzuki, S.; Moriyama, K. Shape Optimization of Bone-Bonding Subperiosteal Devices with Finite Element Analysis. BioMed Res. Int. 2017, 2017, 3609062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Liu, Y.; Zhang, J.; Peng, W.; Jiang, X. Biomechanical Investigation of Orthodontic Treatment Planning Based on Orthodontic Force Measurement and Finite Element Method before Implementation: A Case Study. Technol. Health Care 2018, 26 (Suppl. 1), 347–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kun, Q.; Yifei, X.; Yuxia, H.; Kei-Qing, W. Comparison of posterior occlusion between patients with anterior open bite and scissor deep bite. Int. Med. Res. 2018, 46, 2284–2291. [Google Scholar]
- Sugii, M.M.; Barreto, B.C.F.; Francisco Vieira-Júnior, W.; Simone, K.R.I.; Bacchi, A.; Caldas, R.A. Extruded Upper First Molar Intrusion: Comparison between Unilateral and Bilateral Miniscrew Anchorage. Dent. Press J. Orthod. 2018, 23, 63–70. [Google Scholar] [CrossRef]
- Roberts, W.E.; Viecilli, R.F.; Chang, C.; Katona, T.R.; Paydar, N.H. Biology of Biomechanics: Finite Element Analysis of a Statically Determinate System to Rotate the Occlusal Plane for Correction of a Skeletal Class III Open-Bite Malocclusion. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 943–955. [Google Scholar] [CrossRef] [Green Version]
- Shokrani, P.; Hashemi, A.; Shirin, M.B.; Oskui, I.Z. Effect of geometric dimensions and material models of the periodontal ligament in orthodontic tooth movement. Orthod. Craniofac. Res. 2020, 23, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Juan, J.J.; Dong, L.X.; Qun, F.; Xiao-Jun, L.; Shuang, Y.; Zhi, Z.; Shuang, Y.; Yong, S. Prevalence of gingival recession after orthodontic treatment of infraversion and open bite. J. Orofac. Orthop. 2019, 80, 1–8. [Google Scholar]
- Al-Zubaidi, H.J.; Alhuwaizi, A.F. The Evaluation of the Static Friction within Molar Buccal Tubes. Int. J. Med. Res. Health Sci. 2018, 7, 86–92. [Google Scholar]
- Akan, B.; Unal, B.K.; Sahan, A.O.; Kiziltekin, R. Evaluation of anterior open bite correction in patients treated with maxillary posterior segment intrusion using zygomatic anchorage. Am. J. Orthod. Dentofac. Orthop. 2020, 158, 547–554. [Google Scholar] [CrossRef]
- Harikrishnana, P.; Mageshb, V.; Ajayanc, A.M.; JebaSingh, D.K. Finite element analysis of torque induced orthodontic bracket slot deformation in various bracket-archwire contact assembly. Comput. Methods Programs Biomed. 2020, 197, 1–9. [Google Scholar] [CrossRef]
- Weltman, B.; Vig, K.W.L.; Fields, H.W.; Shanker, S.; Kaizar, E.E. Root resorption associated with orthodontic tooth movement: A systematic review. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 462–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linkous, E.R.; Trojan, T.M.; Harris, E.F. External Apical Root Resorption and Vectors of Orthodontic Tooth Movement. Am. J. Orthod. Dentofac. Orthop. 2020, 158, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, A.; Wolfram, U.; Geiger, M.; Boryor, A.; Sander, C.; Faltin, R.; Faltin, K.; Sander, F.G. Periodontal Ligament Hydrostatic Pressure with Areas of Root Resorption After Application of a Continuous Torque Moment. Angle Orthod. 2007, 77, 653–659. [Google Scholar] [CrossRef]
- Gupta, M.; Madhok, K.; Kulshrestha, R.; Chain, S.; Kaur, H.; Yadav, A. Determination of stress distribution on periodontal ligament and alveolar bone by various tooth movements—A 3D FEM study. J. Oral. Biol. Craniofac. Res. 2020, 10, 758–763. [Google Scholar] [CrossRef] [PubMed]
- Fill, T.S.; Toogood, R.W.; Major, P.W.; Carey, J.P. Analytically Determined Mechanical Properties of, and Models for the Periodontal Ligament: Critical Review of Literature. J. Biomech. 2012, 45, 9–16. [Google Scholar] [CrossRef]
- Van Schepdael, A.; Geris, L.; Vander Sloten, J. Analytical Determination of Stress Patterns in the Periodontal Ligament during Orthodontic Tooth Movement. Med. Eng. Phys. 2013, 35, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Kojima, Y.; Fukui, H. Numerical Simulations of Canine Retraction with T-Loop Springs Based on the Updated Moment-To-Force Ratio. Eur. J. Orthod. 2012, 34, 10–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, F.; Roberts, W.E.; Liu, Y.; Shafiee, A.; Chen, J. Mechanical environment for lower canine T-loop retraction compared to en-masse space closure with a power-arm attached to either the canine bracket or the archwire. Angle Orthod. 2020, 90, 801–810. [Google Scholar] [CrossRef] [PubMed]
Materials | Number of the Nodes | Number of the Elements |
---|---|---|
Tooth | 21,427 | 13,192 |
Periodontal ligament | 9702 | 4829 |
Cortical bone | 19,603 | 12,972 |
Trabecular bone | 9323 | 4980 |
Materials | Young’s Modulus (GPa) | Poisson’s Ratio (ν) |
---|---|---|
Tooth | 19.6 | 0.30 |
Periodontal ligament | 7.0 × 10−5 | 0.49 |
Cortical bone | 13.7 | 0.26 |
Trabecular bone | 1.4 | 0.30 |
Regression Lines | ||||
---|---|---|---|---|
Horizontal Displacement | Vertical Displacement | |||
Hook Position | Crown | Root | Crown | Root |
Co | y(x) = −1.21 x + 1.58 | y(x) = 4.43 × 10−1 x −7.22 × 10−1 | y(x) = −3.76 × 10−3 x +4.78 × 10−1 * | y(x) = 9.78 × 10−2 x +2.70 × 10−1 * |
Mi | y(x) = −1.21 x + 1.48 | y(x) = 4.45 × 10−1 x −7.35 × 10−1 | y(x) = −3.69 × 10−3 x +6.68 × 10−1 * | y(x) = 1.16 × 10−1 x +4.41 × 10−1 * |
Ap | y(x) = −1.21 x + 1.38 | y(x) = 4.47 × 10−1x −7.43 × 10−1 | y(x) = −3.69 × 10−3 x +6.97 × 10−1 * | y(x) = 1.15 × 10−1 x +4.79 × 10−1 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pooktuantong, O.; Ogasawara, T.; Uezono, M.; Chantarawaratit, P.-o.; Moriyama, K. Optimization of Loading Condition for Maxillary Molar Intrusion with Midpalatal Miniscrews by Using Finite Element Analysis. Appl. Sci. 2021, 11, 11749. https://doi.org/10.3390/app112411749
Pooktuantong O, Ogasawara T, Uezono M, Chantarawaratit P-o, Moriyama K. Optimization of Loading Condition for Maxillary Molar Intrusion with Midpalatal Miniscrews by Using Finite Element Analysis. Applied Sciences. 2021; 11(24):11749. https://doi.org/10.3390/app112411749
Chicago/Turabian StylePooktuantong, Ornnicha, Takeshi Ogasawara, Masayoshi Uezono, Pintu-on Chantarawaratit, and Keiji Moriyama. 2021. "Optimization of Loading Condition for Maxillary Molar Intrusion with Midpalatal Miniscrews by Using Finite Element Analysis" Applied Sciences 11, no. 24: 11749. https://doi.org/10.3390/app112411749
APA StylePooktuantong, O., Ogasawara, T., Uezono, M., Chantarawaratit, P. -o., & Moriyama, K. (2021). Optimization of Loading Condition for Maxillary Molar Intrusion with Midpalatal Miniscrews by Using Finite Element Analysis. Applied Sciences, 11(24), 11749. https://doi.org/10.3390/app112411749