The Combined Use of Remote Sensing and Wireless Sensor Network to Estimate Soil Moisture in Golf Course
Abstract
:1. Introduction
2. Related Work
- The combination of sensors and remote sensing generates a tailored index (or indexes) for estimating the soil moisture variations of the studied zone.
- The use of remote sensing imagery is characterized by higher spatial resolution (10 m and 20 m) than the most used imagery, characterized by lower spatial resolution such as MODIS.
- The data verification and clear presentation of indexes, R, and errors in both training and validation datasets.
- The heterogeneity of employed datasets is characterized by different vegetation and different soil types.
3. Materials and Methods
3.1. Studied Zone
3.2. Sentinel-2 Image Gathering
3.3. Data Processing
4. Results
4.1. Data of Bands with a Spatial Resolution of 10 m
4.1.1. Multivariate Analyses
4.1.2. Regression Models
4.2. Data of Bands with a Spatial Resolution of 20 m
4.2.1. Multivariate Analyses
4.2.2. Regression Models
4.3. Verification of Our Regression Models
5. Discussion
5.1. Comparison of Our Regression Models with Existing Moisture Indexes
5.2. Limitation of Proposed Regression Models
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bahri, A.; Basset, C.; Queslati, F.; Brissaud, F. Reuse of reclaimed wastewater for golf course irrigation in Tunisia. Water Sci. Technol. 2001, 43, 117–124. [Google Scholar] [CrossRef]
- Salgot, M.; Priestley, G.K.; Folch, M. Golf Course Irrigation with Reclaimed Water in the Mediterranean: A Risk Management Matter. Water 2012, 4, 389–429. [Google Scholar] [CrossRef] [Green Version]
- Ezhilazhahi, A.M.; Bhuvaneswari, P.T.V. IoT enabled plant soil moisture monitoring using wireless sensor networks. In Proceedings of the 2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS), Chennai, India, 4–5 May 2017; pp. 345–349. [Google Scholar]
- Ferrarezi, R.S.; Nogueira, T.A.R.; Zepeda, S.G.C. Performance of Soil Moisture Sensors in Florida Sandy Soils. Water 2020, 12, 358. [Google Scholar] [CrossRef] [Green Version]
- Manneback, P.; Lebau, F. Irrigation Pivot-Center Connected at Low Cost for the Reduction of Crop Water Requirements. In Proceedings of the International Conference on Advanced Communication Technologies and Networking, Marrakech, Morocco, 2–4 April 2018. [Google Scholar]
- Vicente, J.; Rocha, R.; Neves, R. GolfSense: A golf course WSN monitoring application. In Proceedings of the 2010 International Conference on Computer Engineering & Systems, Cairo, Egypt, 30 November–2 December 2010; pp. 152–157. [Google Scholar]
- Parra, L.; Mostaza-Colado, D.; Yousfi, S.; Marín, J.F.; Mauri, P.V.; Lloret, J. Drone RGB Images as a Reliable Information Source to Determine Legumes Establishment Success. Drones 2021, 5, 79. [Google Scholar] [CrossRef]
- Wu, K.; Rodriguez, G.A.; Zajc, M.; Jacquemin, E.; Clément, M.; de Coster, A.; Lambot, S. A new drone-borne GPR for soil moisture mapping. Remote Sens. Environ. 2019, 235, 111456. [Google Scholar] [CrossRef]
- García, L.; Parra, L.; Jimenez, J.M.; Lloret, J.; Mauri, P.V.; Lorenz, P. DronAway: A Proposal on the Use of Remote Sensing Drones as Mobile Gateway for WSN in Precision Agriculture. Appl. Sci. 2020, 10, 6668. [Google Scholar] [CrossRef]
- Gautam, D.; Pagay, V. A Review of Current and Potential Applications of Remote Sensing to Study the Water Status of Horticultural Crops. Agronomy 2020, 10, 140. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, L.; Chawla, I.; Mishra, A.K. A review on remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. J. Hydrol. 2020, 586, 124905. [Google Scholar] [CrossRef]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Xu, C.; Qu, J.; Hao, X.; Cosh, M.H.; Zhu, Z.; Gutenberg, L. Monitoring crop water content for corn and soybean fields through data fusion of MODIS and Landsat measurements in Iowa. Agric. Water Manag. 2020, 227, 105844. [Google Scholar] [CrossRef]
- Adab, H.; Morbidelli, R.; Saltalippi, C.; Moradian, M.; Ghalhari, G.A.F. Machine Learning to Estimate Surface Soil Moisture from Remote Sensing Data. Water 2020, 12, 3223. [Google Scholar] [CrossRef]
- Pablos, M.; Martínez-Fernández, J.; Sánchez, N.; González-Zamora, A. Temporal and Spatial Comparison of Agricultural Drought Indices from Moderate Resolution Satellite Soil Moisture Data Over Northwest Spain. Remote Sens. 2017, 9, 1169. [Google Scholar] [CrossRef] [Green Version]
- Sure, A.; Dikshit, O. Estimation of root zone soil moisture using passive microwave remote sensing: A case study for rice and wheat crops for three states in the Indo-Gangetic basin. J. Environ. Manag. 2019, 234, 75–89. [Google Scholar] [CrossRef]
- Fontanet, M.; Fernàndez-Garcia, D.; Ferrer, F. The value of satellite remote sensing soil moisture data and the DISPATCH algorithm in irrigation fields. Hydrol. Earth Syst. Sci. Vil. 2018, 22, 5889–5900. [Google Scholar] [CrossRef] [Green Version]
- Garrido-Rubio, J.; González-Piqueras, J.; Campos, I.; Osann, A.; González-Gómez, L.; Calera, A. Remote sensing-based soil water balance for irrigation water accounting at plot and water user association management scale. Agric. Water Manag. Vil. 2020, 238, 106236. [Google Scholar] [CrossRef]
- Bienes, R.; Fernández-Quintanilla, C.; Gallego, J.; Hernanz, J.L.; Martínez, T.; Mauri, P.; Vergara, G. El Encín: Clima, Suelo y Vegetación; Consejería de Medio Ambiente, Dirección General de Educación y Promoción Ambiental: Comunidad de Madrid, Spain, 2000; ISBN 84-4511865-X. [Google Scholar]
- ArcMap Software. Available online: https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (accessed on 20 October 2021).
- Soil Moisture Sensor Information of Provider. Available online: https://plantae.garden/products/station/ (accessed on 29 November 2021).
- Operation Description of Extract Values to Poits Tool from ArcMap. Available online: https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/extract-values-to-points.htm (accessed on 29 November 2021).
- Statgraphics Centurion XVIII Software. Available online: https://statgraphics.net/ (accessed on 20 October 2021).
- Operation Description of Raster Calculator Tool from ArcMap. Available online: https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-raster-calculator-works.htm (accessed on 29 November 2021).
- Sentinel Playground Webpage. Available online: https://apps.sentinel-hub.com/sentinel-playground (accessed on 20 October 2021).
- WMS of Orthophoto of PNOA. Available online: https://www.ign.es/wms-inspire/pnoa-ma?request=GetCapabilities&service=WMS (accessed on 20 October 2021).
- Srivastava, P.K.; Pandey, P.C.; Petropoulos, G.P.; Kourgialas, N.N.; Pandey, V.; Singh, U. GIS and remote sensing aided information for soil moisture estimation: A comparative study of interpolation techniques. Resources 2019, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Xu, X.; Liu, W.; Liu, M.; Li, Z.; Peng, T.; Chaohao, X.; Yaohua, Z.; Zhang, R. UAV based soil moisture remote sensing in a karst mountainous catchment. Catena 2019, 174, 478–489. [Google Scholar] [CrossRef]
- Pal, M.; Maity, R. Assimilation of remote sensing based surface soil moisture to develop a spatially varying vertical soil moisture profile database for entire Indian mainland. J. Hydrol. 2021, 601, 126807. [Google Scholar] [CrossRef]
- Piles, M.; Camps, A.; Vall-Llossera, M.; Corbella, I.; Panciera, R.; Rudiger, C.; Kerr, Y.H.; Walker, J. Downscaling SMOS-derived soil moisture using MODIS visible/infrared data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3156–3166. [Google Scholar] [CrossRef]
- Chen, Q.; Miao, F.; Wang, H.; Xu, Z.X.; Tang, Z.; Yang, L.; Qi, S. Downscaling of satellite remote sensing soil moisture products over the Tibetan Plateau based on the random forest algorithm: Preliminary results. Earth Space Sci. 2020, 7, e2020EA001265. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Li, C.; Li, Z.; Wang, Y.; Feng, H.; Xu, B. Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sens. 2017, 9, 708. [Google Scholar] [CrossRef] [Green Version]
- Jing, W.; Yang, Y.; Yue, X.; Zhao, X. A comparison of different regression algorithms for downscaling monthly satellite-based precipitation over North China. Remote Sens. 2016, 8, 835. [Google Scholar] [CrossRef] [Green Version]
- Forkuor, G.; Conrad, C.; Thiel, M.; Zoungrana, B.J.; Tondoh, J.E. Multiscale remote sensing to map the spatial distribution and extent of cropland in the Sudanian Savanna of West Africa. Remote Sens. 2017, 9, 839. [Google Scholar] [CrossRef] [Green Version]
- An, G.; Xing, M.; He, B.; Liao, C.; Huang, X.; Shang, J.; Kang, H. Using machine learning for estimating rice chlorophyll content from in situ hyperspectral data. Remote Sens. 2020, 12, 3104. [Google Scholar] [CrossRef]
- Kieffer, D.L.; O’Connor, T.S. Managing soil moisture on golf greens using a portable wave reflectometer. In Proceedings of the Annual Irrigation Show, San Diego, CA, USA, 9–11 December 2007. [Google Scholar]
- Kieffer, D.L.; Huck, M. A Comparison of Fairway Distribution Uniformity Computed with Catch Can Data and with Soil Moisture Data from Three Sampling Depths. In Proceedings of the 29th Annual Irrigation Show, California, CA, USA, 2–4 November 2008; Volume 2. [Google Scholar]
- Carrow, R.N.; Cline, V. Precision Turf Management: A New Water Audit Based on Soil Moisture; Golf Course Management Magazine: USA, 2011; pp. 76–82. [Google Scholar]
- Marín, J.; Yousfi, S.; Mauri, P.V.; Parra, L.; Lloret, J.; Masaguer, A. RGB vegetation indices, NDVI, and biomass as indicators to evaluate C3 and C4 turfgrass under different water conditions. Sustainability 2020, 12, 2160. [Google Scholar] [CrossRef] [Green Version]
- Mauri, P.V.; Parra, L.; Yousfi, S.; Lloret, J.; Marin, J.F. Evaluating the Effects of Environmental Conditions on Sensed Parameters for Green Areas Monitoring and Smart Irrigation Systems. Sensors 2021, 21, 2255. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mauri, P.V.; Parra, L.; Mostaza-Colado, D.; Garcia, L.; Lloret, J.; Marin, J.F. The Combined Use of Remote Sensing and Wireless Sensor Network to Estimate Soil Moisture in Golf Course. Appl. Sci. 2021, 11, 11769. https://doi.org/10.3390/app112411769
Mauri PV, Parra L, Mostaza-Colado D, Garcia L, Lloret J, Marin JF. The Combined Use of Remote Sensing and Wireless Sensor Network to Estimate Soil Moisture in Golf Course. Applied Sciences. 2021; 11(24):11769. https://doi.org/10.3390/app112411769
Chicago/Turabian StyleMauri, Pedro V., Lorena Parra, David Mostaza-Colado, Laura Garcia, Jaime Lloret, and Jose F. Marin. 2021. "The Combined Use of Remote Sensing and Wireless Sensor Network to Estimate Soil Moisture in Golf Course" Applied Sciences 11, no. 24: 11769. https://doi.org/10.3390/app112411769
APA StyleMauri, P. V., Parra, L., Mostaza-Colado, D., Garcia, L., Lloret, J., & Marin, J. F. (2021). The Combined Use of Remote Sensing and Wireless Sensor Network to Estimate Soil Moisture in Golf Course. Applied Sciences, 11(24), 11769. https://doi.org/10.3390/app112411769