Application of a Geotextile in the Treatment of Post-Subsidence in Karst Areas
Abstract
:1. Introduction
2. Research Methodology
2.1. Large-Scale Model Test
2.2. Numerical Modeling
3. Validation of the Numerical Modeling
4. Results and Discussion
4.1. Effects of Anchorage Length of Geotextile
4.1.1. Soil Pressure
4.1.2. Tensile Force and Deformation of Geotextile
4.1.3. Soil Displacement
4.2. Effects of Buried Depth of Geotextile
4.2.1. Soil Pressure
4.2.2. Tensile Force and Deformation of Geotextile
4.2.3. Soil Displacement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gutiérrez, F.; Benito-Calvo, A.; Carbonel, D.; Desir, G.; Sevil, J.; Guerrero, J.; Fabregat, I. Review on sinkhole monitoring and performance of remediation measures by high-precision leveling and terrestrial laser scanner in the salt karst of the Ebro Valley, Spain. Eng. Geol. 2019, 248, 283–308. [Google Scholar] [CrossRef]
- Galve, J.P.; Remondo, J.; Gutiérrez, F. Improving sinkhole hazard models incorporating magnitude–frequency relationships and nearest neighbor analysis. Geomorphology 2011, 134, 157–170. [Google Scholar] [CrossRef]
- Brinkmann, R.; Parise, M.; Dye, D. Sinkhole distribution in a rapidly developing urban environment: Hillsborough County, Tampa Bay area, Florida. Eng. Geol. 2008, 99, 169–184. [Google Scholar] [CrossRef]
- Jones, C.J.; Cooper, A.H. Road construction over voids caused by active gypsum dissolution, with an example from Ripon, North Yorkshire, England. Environ. Geol. 2005, 48, 384–394. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.W.; Yum, B.W.; Ryu, D.W.; Lee, H.J.; Jung, B. The influence of clay content on cave-ins in tank model tests and monitoring indicators of sinkhole formation. Appl. Sci. 2019, 9, 2346. [Google Scholar] [CrossRef] [Green Version]
- Pagano, M.; Palma, B.; Ruocco, A.; Parise, M. Discontinuity Characterization of Rock Masses through Terrestrial Laser Scanner and Unmanned Aerial Vehicle Techniques Aimed at Slope Stability Assessment. Appl. Sci. 2020, 10, 2960. [Google Scholar] [CrossRef]
- Poorooshasb, H.B. Subsidence evaluation of geotextile reinforced gravel mats bridging a sinkhole. Geosynth. Int. 2002, 9, 259–282. [Google Scholar] [CrossRef]
- Han, J.; Wang, F.; Miao, L. Numerical analysis of embankments supported by geosynthetics over drilled shafts in karst terrains. In Proceedings of the 11th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst, Tallahassee, FL, USA, 22–26 September 2008; pp. 535–544. [Google Scholar]
- Al Heib, M.; Hassoun, M.; Emeriault, F.; Villard, P.; Farhat, A. Predicting subsidence of cohesive and granular soil layers reinforced by geosynthetic. Environ. Earth. Sci. 2021, 80, 70. [Google Scholar] [CrossRef]
- Won, M.S.; Langcuyan, C.P. Numerical Analyses on the Behavior of Geosynthetic-Reinforced Soil: Integral Bridge and Integrated Bridge System. Appl. Sci. 2021, 11, 8144. [Google Scholar] [CrossRef]
- Xu, C.; Liang, C.; Shen, P.; Chai, F. Experimental and numerical studies on the reinforcing mechanisms of geosynthetic-reinforced granular soil under a plane strain condition. Soils Found. 2020, 60, 466–477. [Google Scholar] [CrossRef]
- Sukmak, G.; Sukmak, P.; Horpibulsuk, S.; Hoy, M.; Arulrajah, A. Load Bearing Capacity of Cohesive-Frictional Soils Reinforced with Full-Wraparound Geotextiles: Experimental and Numerical Investigation. Appl. Sci. 2021, 11, 2973. [Google Scholar] [CrossRef]
- Da Silva Burke, T.S.; Elshafie, M.Z.E.B. Geosynthetic-reinforced soils above voids: Observation of soil and geosynthetic deformation mechanisms. Geotext. Geomembr. 2021, 49, 1–18. [Google Scholar] [CrossRef]
- Da Silva Burke, T.S.; Elshafie, M.Z.E.B. Geosynthetic-reinforced soils above voids: Observation and prediction of soil arching. Geotext. Geomembr. 2021, 49, 579–592. [Google Scholar] [CrossRef]
- Le, V.; Huang, J.; Bin-Shafique, S.; Papagiannakis, A.T. Model tests of subsidence of the reinforced soil over voids. In Proceedings of the Geo-Shanghai 2014 International Conference: Ground Improvement and Geosynthetics, Shanghai, China, 26–28 May 2014; pp. 312–321. [Google Scholar]
- Giroud, J.P.; Bonaparte, R.; Beech, J.F.; Gross, B.A. Design of soil layer-geosynthetic systems overlying voids. Geotext. Geomembr. 1990, 9, 11–50. [Google Scholar] [CrossRef]
- Parry, H.J. Coping with Fife’s mining industrial heritage. Munic. Eng. 1983, 110, 231–240. [Google Scholar]
- Tano, B.F.G.; Stoltz, G.; Coulibaly, S.S.; Bruhier, J.; Dias, D.; Olivier, F.; Touze-Foltz, N. Large-scale tests to assess the efficiency of a geosynthetic reinforcement over a cavity. Geosynth. Int. 2018, 25, 242–258. [Google Scholar] [CrossRef]
- Huckert, A.; Briançon, L.; Villard, P.; Garcin, P. Load transfer mechanisms in geotextile-reinforced embankments overlying voids: Experimental and analytical approaches. Geotext. Geomembr. 2016, 44, 442–456. [Google Scholar] [CrossRef]
- Sireesh, S.; Sitharam, T.G.; Dash, S.K. Bearing capacity of circular footing on geocell–sand mattress overlying clay bed with void. Geotext. Geomembr. 2009, 27, 89–98. [Google Scholar] [CrossRef]
- Tran, V.D.H.; Meguid, M.A.; Chouinard, L.E. Three-dimensional analysis of geogrid-reinforced soil using a finite-discrete element framework. Int. J. Geomech. 2015, 15, 04014066. [Google Scholar] [CrossRef]
- Lawson, C.R.; Yee, T.W. Serviceability limits for basal reinforced embankments spanning voids. In Proceedings of the Geo-Frontiers 2011: Advances in Geotechnical Engineering, Dallas, TX, USA, 13–16 March 2011; pp. 3276–3285. [Google Scholar]
- Villard, P.; Huckert, A.; Briançon, L. Load transfer mechanisms in geotextile-reinforced embankments overlying voids: Numerical approach and design. Geotext. Geomembr. 2016, 44, 381–395. [Google Scholar] [CrossRef]
- Lai, F.; Chen, F.; Li, D. Bearing capacity characteristics and failure modes of low geosynthetic-reinforced embankments overlying voids. Int. J. Geomech. 2018, 18, 04018085. [Google Scholar] [CrossRef]
- Galve, J.P.; Gutiérrez, F.; Guerrero, J.; Alonso, J.; Diego, I. Optimizing the application of geosynthetics to roads in sinkhole-prone areas on the basis of hazard models and cost-benefit analyses. Geotext. Geomembr. 2012, 34, 80–92. [Google Scholar] [CrossRef]
- Galve, J.P.; Gutiérrez, F.; Guerrero, J.; Alonso, J.; Diego, I. Application of risk, cost–benefit and acceptability analyses to identify the most appropriate geosynthetic solution to mitigate sinkhole damage on roads. Eng. Geol. 2012, 145, 65–77. [Google Scholar] [CrossRef]
- Chen, F.Q.; Lin, Y.J.; Chen, S.X. Analytical solutions for geosynthetic-reinforced cohesive subgrade spanning trench voids. Geotext. Geomembr. 2020, 48, 854–866. [Google Scholar] [CrossRef]
- Villard, P.; Briancon, L. Design of geosynthetic reinforcements for platforms subjected to localized sinkholes. Can. Geotech. J. 2008, 45, 196–209. [Google Scholar] [CrossRef]
- Feng, S.J.; Ai, S.G.; Chen, H.X.; Xie, H.J. An analytical method for predicting load acting on geosynthetic overlying voids. Geotext. Geomembr. 2017, 45, 570–579. [Google Scholar] [CrossRef]
- Feng, S.J.; Ai, S.G.; Chen, H.X. Membrane effect of geosynthetic reinforcement subjected to localized sinkholes. Can. Geotech. J. 2018, 55, 1334–1348. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Wu, J.J.; Xu, C.; Chen, X.J.; Huang, X. Model test of geotextiles in controlling the collapse of karst roadbed. Rock Soil Mech. 2020, 41 (Suppl. S2), 1–11. (In Chinese) [Google Scholar]
- Wu, D.; Luo, C.; Wu, J.J. Model tests of geotextile in collapse treatment of karst subgrade. In Proceedings of the 6th International Conference on Hydraulic and Civil Engineering, Xi’an, China, 11–13 December 2020; Volume 643, p. 012058. [Google Scholar]
- Westine, P.S.; Dodge, F.T.; Baker, W.E. Similarity Methods in Engineering Dynamics: Theory and Practice of Scale Modeling; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Wang, L.; Zhang, G.; Zhang, J.M. Centrifuge model tests of geotextile-reinforced soil embankments during an earthquake. Geotext. Geomembr. 2011, 29, 222–232. [Google Scholar] [CrossRef]
- British Standards Institution. British Standard 8006. Code of Practice for Strengthened/Reinforced Soils and Other Fills; BSI Standards Publication: London, UK, 2010. [Google Scholar]
Quantity | Unit | Scaling Factor (Ip:Im) |
---|---|---|
Length | m | N |
Force | N | N2 |
Mass | kg | N3 |
Density | kg/m3 | 1 |
Stress | Pa | 1 |
Strain | % | 1 |
Tensile load | N/m | N |
Secant stiffness | N/m | N |
Variation | Test No. | Subsidence Width, B (mm) | Anchorage Length of the Geotextile, L (mm) | Anchorage Ratio, L/B | Buried Depth of the Geotextile, H (mm) |
---|---|---|---|---|---|
Anchorage length of the geotextile [31] | T1 | 300 | 600 | 2.0 | 1000 |
T2 | 300 | 300 | 1.0 | 1000 | |
T3 | 300 | 150 | 0.5 | 1000 | |
T4 | 300 | 75 | 0.25 | 1000 | |
T5 | 300 | 0 | 0 | N.A. | |
Buried depth of the geotextile [32] | T1 | 300 | 600 | 2.0 | 1000 |
T6 | 300 | 600 | 2.0 | 500 |
Material | Model Type | Unit Weight, γ (kN/m3) | Elastic Modulus, E’ (kN/m2) | Poisson’s Ratio, ν’ | Cohesion, c’ (kPa) | Internal Friction Angle, φ’ (°) | Tensile Stiffness, J (kN/m) |
---|---|---|---|---|---|---|---|
Subgrade fill | Mohr–Coulomb model | 17 | 30,000 | 0.3 | 1 | 33 | - |
Reinforcement | Elastic model | - | - | - | - | - | 3000 |
Variation | Numerical Model | Subsidence Width, B (mm) | Anchorage Length of Geotextile, L (mm) | Anchorage Ratio, L/B | Buried Depth of Geotextile, H (mm) |
---|---|---|---|---|---|
Anchorage length of geotextile | M1 | 1500 | 0 | 0 | N.A. |
M2 | 1500 | 375 | 0.25 | 5000 | |
M3 | 1500 | 525 | 0.35 | 5000 | |
M4 | 1500 | 750 | 0.50 | 5000 | |
M5 | 1500 | 1125 | 0.75 | 5000 | |
M6 | 1500 | 1500 | 1.00 | 5000 | |
Buried depth of geotextile | M7 | 1500 | 850 | 0.57 | 2000 |
M8 | 1500 | 850 | 0.57 | 3000 | |
M9 | 1500 | 850 | 0.57 | 4000 | |
M4 | 1500 | 850 | 0.57 | 5000 | |
M7 | 1500 | 850 | 0.57 | 6000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Luo, C.; Li, Y.; Yang, Y.; Liang, Y.; Wu, J. Application of a Geotextile in the Treatment of Post-Subsidence in Karst Areas. Appl. Sci. 2021, 11, 11826. https://doi.org/10.3390/app112411826
Wu D, Luo C, Li Y, Yang Y, Liang Y, Wu J. Application of a Geotextile in the Treatment of Post-Subsidence in Karst Areas. Applied Sciences. 2021; 11(24):11826. https://doi.org/10.3390/app112411826
Chicago/Turabian StyleWu, Di, Chen Luo, Yuankun Li, Yanxin Yang, Yihuai Liang, and Jianjian Wu. 2021. "Application of a Geotextile in the Treatment of Post-Subsidence in Karst Areas" Applied Sciences 11, no. 24: 11826. https://doi.org/10.3390/app112411826
APA StyleWu, D., Luo, C., Li, Y., Yang, Y., Liang, Y., & Wu, J. (2021). Application of a Geotextile in the Treatment of Post-Subsidence in Karst Areas. Applied Sciences, 11(24), 11826. https://doi.org/10.3390/app112411826