A Dual-Stage Vocabulary of Features (VoF)-Based Technique for COVID-19 Variants’ Classification
Abstract
:1. Introduction
2. Literature Review
- Detection of COVID-19 from CT scans and chest X-rays;
- Classification of COVID-19 variants based on a unique vocabulary of features (VoF) technique;
- Comparison of the proposed method with state-of-the art techniques.
3. Proposed Methodology
3.1. Preprocessing
3.1.1. CT Scan Image Slicing Planes
3.1.2. Sample Size of Chest X-rays and CT Scans
3.1.3. Image Resize
3.1.4. Discrete Wavelet Transform
3.2. COVID-19 Detection Using DCNN
3.3. Features Extraction
3.3.1. Handcrafted Features Extraction
3.3.2. Spatial Features Extraction
3.4. Vocabulary of Features (VoF) Vector
3.5. Classifier
3.6. Dataset
4. Experimental Results
4.1. Simulation Parameters
4.2. Simulation Results
4.3. Validation of Results
4.4. Comparison with Existing Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chamola, V.; Hassija, V.; Gupta, V.; Guizani, M. A Comprehensive Review of the COVID-19 Pandemic and the Role of IoT, Drones, AI, Blockchain, and 5G in Managing its Impact. IEEE Access 2020, 8, 90225–90265. [Google Scholar] [CrossRef]
- Bose, P.; Roy, S.; Ghosh, P. A Comparative NLP-Based Study on the Current Trends and Future Directions in COVID-19 Research. IEEE Access 2021, 9, 78341–78355. [Google Scholar] [CrossRef]
- Mahase, E. Delta variant: What is Happening with Transmission, Hospital Admissions, and Restrictions? BMJ 2021, 373, n1513. [Google Scholar] [CrossRef] [PubMed]
- Bell, D.; Worsley, C. COVID-19. Radiopaedia.org. Available online: https://radiopaedia.org/articles/covid-19-4?lang=us (accessed on 21 October 2021).
- Rehman, A.; Iqbal, M.A.; Xing, H.; Ahmed, I. COVID-19 Detection Empowered with Machine Learning and Deep Learning Techniques: A Systematic Review. Appl. Sci. 2021, 11, 3414. [Google Scholar] [CrossRef]
- Allam, Z.; Dey, G.; Jones, D.S. Artificial Intelligence (AI) Provided Early Detection of the Coronavirus (COVID-19) in China and Will Influence Future Urban Health Policy Internationally. AI 2020, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Hussain, I.; Park, S.-J. HealthSOS: Real-Time Health Monitoring System for Stroke Prognostics. IEEE Access 2020, 8, 213574–213586. [Google Scholar] [CrossRef]
- Hussain, I.; Park, S.-J. Big-ECG: Cardiographic Predictive Cyber-Physical System for Stroke Management. IEEE Access 2021, 9, 123146–123164. [Google Scholar] [CrossRef]
- Hussain, I.; Park, S.-J. Quantitative Evaluation of Task-Induced Neurological Outcome after Stroke. Brain Sci. 2021, 11, 900. [Google Scholar] [CrossRef]
- Hussain, I.; Young, S.; Kim, C.H.; Benjamin, H.C.M.; Park, S.J. Quantifying Physiological Biomarkers of a Microwave Brain Stimulation Device. Sensors 2021, 21, 1896. [Google Scholar] [CrossRef] [PubMed]
- Khasawneh, N.; Fraiwan, M.; Fraiwan, L.; Khassawneh, B.; Ibnian, A. Detection of COVID-19 from Chest X-ray Images Using Deep Convolutional Neural Networks. Sensors 2021, 21, 5940. [Google Scholar] [CrossRef]
- Narin, A.; Kaya, C.; Pamuk, Z. Automatic Detection of Coronavirus Disease (COVID-19) using X-ray images and Deep Convolutional Neural Networks. Pattern Anal. Appl. 2021, 24, 1207–1220. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lin, Z.Q.; Wong, A. Covid-net: A Tailored Deep Convolutional Neural Network Design for Detection of Covid-19 Cases from Chest X-ray images. Sci. Rep. 2020, 10, 19549. [Google Scholar] [CrossRef] [PubMed]
- Ucar, F.; Korkmaz, D. COVIDiagnosis-Net: Deep Bayes SqueezeNet Based Diagnosis of the Coronavirus Disease 2019 (COVID-19) from X-ray images. Med. Hypotheses 2020, 140, 109761. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Kang, B.; Ma, J.; Zeng, X.; Xiao, M.; Guo, J.; Cai, M.; Yang, J.; Li, Y.; Meng, X.; et al. A Deep Learning Algorithm using CT Images to Screen for Corona Virus Disease (COVID-19). Eur. Radiol. 2021, 31, 6096–6104. [Google Scholar] [CrossRef] [PubMed]
- Asif, S.; Wenhui, Y.; Jin, H.; Jinhai, S. Classification of COVID-19 from Chest X-ray images using Deep Convolutional Neural Network. In Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu, China, 11–14 December 2020; pp. 426–433. [Google Scholar]
- Alazab, M.; Awajan, A.; Mesleh, A.; Abraham, A.; Jatana, V.; Alhyari, S. COVID-19 Prediction and Detection using Deep Learning. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 2020, 12, 168–181. [Google Scholar]
- Tuncer, T.; Ozyurt, F.; Dogan, S.; Subasi, A. A Novel COVID-19 and Pneumonia Classification Method Based on F-Transform. Chemom. Intell. Lab. Syst. 2021, 210, 104256. [Google Scholar] [CrossRef]
- Che Azemin, M.Z.; Hassan, R.; Mohd Tamrin, M.I.; Md Ali, M.A. COVID-19 Deep Learning Prediction Model using Publicly Available Radiologist-Adjudicated Chest X-ray images as Training data: Preliminary Findings. Int. J. Biomed. Imaging 2020, 2020, 8828855. [Google Scholar] [CrossRef]
- Ozturk, T.; Talo, M.; Yildirim, E.A.; Baloglu, U.B.; Yildirim, O.; Acharya, U.R. Automated Detection of COVID-19 Cases using Deep Neural Networks with X-ray images. Comput. Biol. Med. 2020, 121, 103792. [Google Scholar] [CrossRef]
- Ahsan, M.M.; Gupta, K.D.; Islam, M.M.; Sen, S.; Rahman, M.L.; Shakhawat Hossain, M. COVID-19 Symptoms Detection Based on NasNetMobile with Explainable AI Using Various Imaging Modalities. Mach. Learn. Knowl. Extr. 2020, 2, 27. [Google Scholar] [CrossRef]
- Asadollahi-Amin, A.; Hasibi, M.; Ghadimi, F.; Rezaei, H.; SeyedAlinaghi, S. Lung Involvement Found on Chest CT Scan in a Pre-Symptomatic Person with SARS-CoV-2 Infection: A Case Report. Trop. Med. Infect. Dis. 2020, 5, 56. [Google Scholar] [CrossRef]
- Khurshid, Z.; Asiri, F.Y.I.; Al Wadaani, H. Human Saliva: Non-Invasive Fluid for Detecting Novel Coronavirus (2019-nCoV). Int. J. Environ. Res. Public Health 2020, 17, 2225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vashist, S.K. In Vitro Diagnostic Assays for COVID-19: Recent Advances and Emerging Trends. Diagnostics 2020, 10, 202. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Gao, S.; Zhang, L.; Lou, X. Histogram of Oriented Gradients Feature Extraction From Raw Bayer Pattern Images. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 946–950. [Google Scholar] [CrossRef]
- Farooq, A.; Jia, X.; Hu, J.; Zhou, J. Multi-Resolution Weed Classification via Convolutional Neural Network and Superpixel Based Local Binary Pattern Using Remote Sensing Images. Remote Sens. 2019, 11, 1692. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Hu, X.; Xiao, J.; Du, H.; Zhang, G. Improved ORB Algorithm Using Three-Patch Method and Local Gray Difference. Sensors 2020, 20, 975. [Google Scholar] [CrossRef] [Green Version]
- Chohan, F.; Ishak, A.; Alderette, T.; Rad, P.; Michel, G. Clinical Presentation of a COVID-19 Delta Variant Patient: Case Report and Literature Review. Cureus 2021, 13, e18603. [Google Scholar] [CrossRef]
- Jamil, S.; Rahman, M.; Ullah, A.; Badnava, S.; Forsat, M.; Mirjavadi, S.S. Malicious UAV Detection Using Integrated Audio and Visual Features for Public Safety Applications. Sensors 2020, 20, 3923. [Google Scholar] [CrossRef]
- Fulton, L.V.; Dolezel, D.; Harrop, J.; Yan, Y.; Fulton, C.P. Classification of Alzheimer’s Disease with and without Imagery Using Gradient Boosted Machines and ResNet-50. Brain Sci. 2019, 9, 212. [Google Scholar] [CrossRef] [Green Version]
- Awan, M.J.; Bilal, M.H.; Yasin, A.; Nobanee, H.; Khan, N.S.; Zain, A.M. Detection of COVID-19 in Chest X-ray Images: A Big Data Enabled Deep Learning Approach. Int. J. Environ. Res. Public Health 2021, 18, 10147. [Google Scholar] [CrossRef]
- Ismail, A.; Elpeltagy, M.; Zaki, M.S.; Eldahshan, K. A New Deep Learning-Based Methodology for Video Deepfake Detection Using XGBoost. Sensors 2021, 21, 5413. [Google Scholar] [CrossRef]
- Bansal, P.; Kumar, R.; Kumar, S. Disease Detection in Apple Leaves Using Deep Convolutional Neural Network. Agriculture 2021, 11, 617. [Google Scholar] [CrossRef]
- Jamil, S.; Rahman, M.; Haider, A. Bag of Features (BoF) Based Deep Learning Framework for Bleached Corals Detection. Big Data Cogn. Comput. 2021, 5, 53. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Salehi, B.; Rezaee, M.; Mohammadimanesh, F.; Zhang, Y. Very Deep Convolutional Neural Networks for Complex Land Cover Mapping Using Multispectral Remote Sensing Imagery. Remote Sens. 2018, 10, 1119. [Google Scholar] [CrossRef] [Green Version]
- Srinivasu, P.N.; SivaSai, J.G.; Ijaz, M.F.; Bhoi, A.K.; Kim, W.; Kang, J.J. Classification of Skin Disease Using Deep Learning Neural Networks with MobileNet V2 and LSTM. Sensors 2021, 21, 2852. [Google Scholar] [CrossRef]
- Alhichri, H.; Bazi, Y.; Alajlan, N.; Bin Jdira, B. Helping the Visually Impaired See via Image Multi-labeling Based on SqueezeNet CNN. Appl. Sci. 2019, 9, 4656. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Zhang, C.; Xu, Q.; Cheng, R.; Song, Y.; Yuan, X.; Sun, J. I3D-Shufflenet Based Human Action Recognition. Algorithms 2020, 13, 301. [Google Scholar] [CrossRef]
- Mateen, M.; Wen, J.; Song, S.; Huang, Z. Fundus Image Classification Using VGG-19 Architecture with PCA and SVD. Symmetry 2019, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Ren, F.; Li, Y.; Na, L.; Ma, Y. Pneumonia Detection from Chest X-ray Images Based on Convolutional Neural Network. Electronics 2021, 10, 1512. [Google Scholar] [CrossRef]
- Loey, M.; Smarandache, F.; Khalifa, N.E.M. Within the Lack of Chest COVID-19 X-ray Dataset: A Novel Detection Model Based on GAN and Deep Transfer Learning. Symmetry 2020, 12, 651. [Google Scholar] [CrossRef] [Green Version]
- Misra, S.; Jeon, S.; Lee, S.; Managuli, R.; Jang, I.-S.; Kim, C. Multi-Channel Transfer Learning of Chest X-ray Images for Screening of COVID-19. Electronics 2020, 9, 1388. [Google Scholar] [CrossRef]
- Lee, K.S.; Kim, J.Y.; Jeon, E.T.; Choi, W.S.; Kim, N.H.; Lee, K.Y. Evaluation of Scalability and Degree of Fine-Tuning of Deep Convolutional Neural Networks for COVID-19 Screening on Chest X-ray Images Using Explainable Deep-Learning Algorithm. J. Pers. Med. 2020, 10, 213. [Google Scholar] [CrossRef] [PubMed]
- Bourouis, S.; Alharbi, A.; Bouguila, N. Bayesian Learning of Shifted-Scaled Dirichlet Mixture Models and Its Application to Early COVID-19 Detection in Chest X-ray Images. J. Imaging 2021, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Alam, N.A.; Ahsan, M.; Based, M.A.; Haider, J.; Kowalski, M. COVID-19 Detection from Chest X-ray Images Using Feature Fusion and Deep Learning. Sensors 2021, 21, 1480. [Google Scholar] [CrossRef]
- Duran-Lopez, L.; Dominguez-Morales, J.P.; Corral-Jaime, J.; Vicente-Diaz, S.; Linares-Barranco, A. COVID-XNet: A Custom Deep Learning System to Diagnose and Locate COVID-19 in Chest X-ray Images. Appl. Sci. 2020, 10, 5683. [Google Scholar] [CrossRef]
- Civit-Masot, J.; Luna-Perejón, F.; Domínguez Morales, M.; Civit, A. Deep Learning System for COVID-19 Diagnosis Aid Using X-ray Pulmonary Images. Appl. Sci. 2020, 10, 4640. [Google Scholar] [CrossRef]
- Alshazly, H.; Linse, C.; Barth, E.; Martinetz, T. Explainable COVID-19 Detection Using Chest CT Scans and Deep Learning. Sensors 2021, 21, 455. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Dey, A.; Singh, P.K.; Geem, Z.W.; Sarkar, R. COVID-19 Detection by Optimizing Deep Residual Features with Improved Clustering-Based Golden Ratio Optimizer. Diagnostics 2021, 11, 315. [Google Scholar] [CrossRef]
- Guiot, J.; Vaidyanathan, A.; Deprez, L.; Zerka, F.; Danthine, D.; Frix, A.-N.; Thys, M.; Henket, M.; Canivet, G.; Mathieu, S.; et al. Development and Validation of an Automated Radiomic CT Signature for Detecting COVID-19. Diagnostics 2021, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Iftikhar, M.A.; Yasin, S.; Draz, U.; Ali, T.; Hussain, S.; Bukhari, S.; Alwadie, A.S.; Rahman, S.; Glowacz, A.; et al. Role of Hybrid Deep Neural Networks (HDNNs), Computed Tomography, and Chest X-rays for the Detection of COVID-19. Int. J. Environ. Res. Public Health 2021, 18, 3056. [Google Scholar] [CrossRef]
- Hasan, A.M.; AL-Jawad, M.M.; Jalab, H.A.; Shaiba, H.; Ibrahim, R.W.; AL-Shamasneh, A.R. Classification of Covid-19 Coronavirus, Pneumonia and Healthy Lungs in CT Scans Using Q-Deformed Entropy and Deep Learning Features. Entropy 2020, 22, 517. [Google Scholar] [CrossRef]
- Fujioka, T.; Takahashi, M.; Mori, M.; Tsuchiya, J.; Yamaga, E.; Horii, T.; Yamada, H.; Kimura, M.; Kimura, K.; Kitazume, Y.; et al. Evaluation of the Usefulness of CO-RADS for Chest CT in Patients Suspected of Having COVID-19. Diagnostics 2020, 10, 608. [Google Scholar] [CrossRef] [PubMed]
- Sallay, H.; Bourouis, S.; Bouguila, N. Online Learning of Finite and Infinite Gamma Mixture Models for COVID-19 Detection in Medical Images. Computers 2021, 10, 6. [Google Scholar] [CrossRef]
- Zulkifley, M.A.; Abdani, S.R.; Zulkifley, N.H. COVID-19 Screening Using a Lightweight Convolutional Neural Network with Generative Adversarial Network Data Augmentation. Symmetry 2020, 12, 1530. [Google Scholar] [CrossRef]
Parameter Name | Parameter Value |
---|---|
Learning rate | 10−3 |
Momentum | 0.9 |
Optimizer | Stochastic Gradient Descent (SGD) |
Learning rate decay | 10−7 |
Mini batch size | 64 |
Loss function | Cross entropy |
Name of DCNN | Accuracy | Specificity | Sensitivity | F1-Score | Cohen’s Kappa (κ) | Classification Error |
---|---|---|---|---|---|---|
AlexNet [29] | 96.4% | 93.5% | 92.5% | 93.00% | 0.91 | 3.6% |
ResNet-50 [30] | 97.5% | 94.6% | 93.6% | 94.10% | 0.92 | 2.5% |
Inception v3 [31] | 98.5% | 95.6% | 94.6% | 95.10% | 0.93 | 1.5% |
DarkNet-53 [32] | 96.2% | 93.3% | 92.3% | 92.80% | 0.90 | 3.8% |
EfficientNet-b7 [33] | 98.9% | 96.0% | 95.0% | 95.50% | 0.93 | 1.1% |
GoogLeNet [34] | 96.4% | 97.4% | 95.4% | 96.39% | 0.94 | 3.6% |
Inception ResNet v2 [35] | 98.7% | 96.5% | 97.1% | 96.80% | 0.95 | 1.3% |
MobileNet v2 [36] | 98.4% | 96.3% | 99.1% | 97.68% | 0.95 | 1.6% |
SqueezeNet [37] | 89.1% | 90.4% | 93.3% | 91.83% | 0.89 | 10.9% |
ShuffleNet [38] | 99.1% | 99.1% | 100% | 99.55% | 0.97 | 0.9% |
VGG-19 [39] | 92.2% | 94.6% | 96.1% | 95.34% | 0.93 | 7.8% |
Xception [40] | 98.5% | 99.2% | 100% | 99.60% | 0.98 | 1.5% |
Proposed | 99.74% | 99.6% | 100% | 99.80% | 0.99 | 0.3% |
Name of DCNN | Accuracy | Specificity | Sensitivity | F1-Score | Cohen’s Kappa (κ) | Classification Error |
---|---|---|---|---|---|---|
AlexNet [29] | 94.1% | 93.2% | 95.3% | 94.24% | 0.92 | 5.9% |
ResNet-50 [30] | 95.2% | 95.6% | 94.6% | 95.10% | 0.93 | 4.8% |
Inception v3 [31] | 96.2% | 94.6% | 96.1% | 95.34% | 0.93 | 3.8% |
DarkNet-53 [32] | 93.9% | 96.3% | 99.1% | 97.68% | 0.95 | 6.1% |
EfficientNet-b7 [33] | 96.6% | 99.2% | 100% | 99.60% | 0.98 | 3.4% |
GoogLeNet [34] | 94.1% | 93.5% | 92.5% | 93.00% | 0.91 | 5.9% |
Inception ResNet v2 [35] | 96.4% | 93.3% | 92.3% | 92.80% | 0.90 | 3.6% |
MobileNet v2 [36] | 96.1% | 96.5% | 97.1% | 96.80% | 0.95 | 3.9% |
SqueezeNet [37] | 86.8% | 90.4% | 93.3% | 91.83% | 0.89 | 13.2 |
ShuffleNet [38] | 96.8% | 97.4% | 95.4% | 96.39% | 0.94 | 3.2% |
VGG-19 [39] | 89.9% | 90.4% | 93.3% | 91.83% | 0.90 | 10.1% |
Xception [40] | 96.2% | 99.1% | 100% | 99.55% | 0.97 | 3.8% |
Proposed | 99.5% | 99.7% | 99.3% | 99.50% | 0.99 | 0.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamil, S.; Rahman, M. A Dual-Stage Vocabulary of Features (VoF)-Based Technique for COVID-19 Variants’ Classification. Appl. Sci. 2021, 11, 11902. https://doi.org/10.3390/app112411902
Jamil S, Rahman M. A Dual-Stage Vocabulary of Features (VoF)-Based Technique for COVID-19 Variants’ Classification. Applied Sciences. 2021; 11(24):11902. https://doi.org/10.3390/app112411902
Chicago/Turabian StyleJamil, Sonain, and MuhibUr Rahman. 2021. "A Dual-Stage Vocabulary of Features (VoF)-Based Technique for COVID-19 Variants’ Classification" Applied Sciences 11, no. 24: 11902. https://doi.org/10.3390/app112411902
APA StyleJamil, S., & Rahman, M. (2021). A Dual-Stage Vocabulary of Features (VoF)-Based Technique for COVID-19 Variants’ Classification. Applied Sciences, 11(24), 11902. https://doi.org/10.3390/app112411902