Railway Track Stress–Strain Analysis Using High-Precision Accelerometers
Abstract
:Featured Application
Abstract
1. Introduction
2. State of the Art
3. Methods
4. Numerical Modeling
- Rail type R65;
- Ballast prism of a given type of transverse profile;
- The Mohr–Coulomb plasticity model [58] described the nonlinear properties of the layered structure of the ballast prism;
- Rail fasteners of ZhBR-65Sh type;
- Track sections and fastening elements were combined into a solid model;
- Standard tightening of the screws was set to hold the rail in the fasteners;
- The calculated values of the forces on the rails from the rolling stock were formed from the average values observed during the interaction of the track and rolling stocks of different masses when passing sections of different curvature at different speeds: vertical load from 20 to 30 tons per axle, lateral forces from 0 to 10 tons;
- Maximum bending stresses in the rail were determined for the position of the wheel between the two consecutive sleepers.
- Tightening of rail fasteners;
- Application of gravity forces;
- Exposure of the rolling stock.
5. Analysis
y = −191.104x2 + 615.992x − 391.266, R2 = 1.0;
y = −246.606x2 + 829.830x − 596.294, R2 = 1.0
- The wheel load of 110.4 kN was between 98.1 and 122.63 kN (step 1);
- A moving rail magnitude of 1 mm corresponds to lateral forces under an axial load of 98.1 kN, equal to: −126.066·x2 + 418.748·x − 231.351. Lateral forces were defined as 61.33 kN (step 3);
- Movement of rail magnitude of 1 mm corresponds to lateral forces at 122.63 kN, axial load equal to: −191.104·x2 + 615.992·x − 391.266. Lateral forces were measured at 33.62 kN (step 4);
- With the help of linear interpolation, we determined the stress–strain state of the elements of the railway track at a wheel load of 110.4 kN and the occurrence of rail displacements directly under the wheels of the rolling stock of 1 mm in size (final step).
6. Experiments
7. Discussion
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pirvan, A.I.; Patru, G.C.; Tranca, D.C.; Contasel, C.; Rosner, D. Infrastructure independent rail quality diagnosis and monitoring system. In Proceedings of the 18th RoEduNet Conference: Networking in Education and Research (RoEduNet), Galați, Romania, 10–12 October 2019; pp. 1–5. [Google Scholar]
- Waston, P.F.; Ling, C.S.; Roberts, C.; Goodman, C.J.; Li, P.; Goodall, R.M. Monitoring vertical track irregularity from in-service railway vehicles. Rail Rapid Transit 2007, 221, 75–88. [Google Scholar] [CrossRef]
- Tsunashima, H.; Matsumoto, A.; Mizuma, T.; Mori, H.; Naganuma, Y. Condition monitoring of railway track using in-service vehicle. J. Mech. Syst. Transp. Logist. 2012, 3, 154–165. [Google Scholar]
- Falamarzi, A.; Moridpour, S.; Nazem, M. A review on existing sensors and devices for inspecting railway infrastructure. J. Kejuruter. J. Eng. 2019, 31, 1–10. [Google Scholar]
- Karthikamani, R.; Kumar, R.; Divya, N. Application of sensors in railway tracks for safety. Int. J. Recent Technol. Eng. 2019, 7, 75–77. [Google Scholar]
- Hodge, V.J.; O’Keefe, S.; Weeks, M.; Moulds, A. Wireless sensor networks for condition monitoring in the railway industry: A survey. IEEE Trans. Intell. Transp. Syst. 2015, 16, 1088–1106. [Google Scholar] [CrossRef]
- Balo, F.; Torğul, B. Internet of Things: A survey. Int. J. Appl. Math. Electron. Comput. 2016, 2016, 104–110. [Google Scholar]
- Patel, K.; Patel, S.; Scholar, P.; Salazar, C. Internet of Things-IOT: Definition, characteristics, architecture, enabling technologies, application & future challenges. Int. J. Eng. Sci. Comput. 2016, 6, 6122–6131. [Google Scholar]
- Liu, G.; Liu, H.; Wei, A.; Xiao, J.; Wang, P.; Li, S. A new device for stress monitoring in continuously welded rails using bi-directional strain method. J. Mod. Transp. 2018, 26, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Hendry, M. A new strain gauge configuration on the rail web to decouple the wheel–rail lateral contact force from wayside measurement. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2019, 233, 095440971882287. [Google Scholar] [CrossRef]
- Tutak, P. Application of strain gauges in measurements of strain distribution in complex objects. J. Appl. Comput. Sci. Methods 2014, 6, 135–145. [Google Scholar] [CrossRef]
- Li, C.; Wang, P.; Gao, T.; Wang, J.; Yang, C.; Liu, H.; He, Q. Spatial–temporal model to identify the deformation of underlying high-speed railway infrastructure. J. Transp. Eng. Part A Syst. 2020, 146, 04020084. [Google Scholar] [CrossRef]
- Gou, H.; Xie, R.; Liu, C.; Bao, Y.; Pu, Q. Analytical study on high-speed railway track deformation under long-term bridge deformations and interlayer degradation. Structures 2021, 29, 1005–1015. [Google Scholar] [CrossRef]
- Stow, J.; Andersson, E. Field testing and instrumentation of railway vehicles. In A Handbook of Railway Vehicle Dynamics; CRC Press: Boca Raton, FL, USA, 2006; pp. 423–456. [Google Scholar]
- Wang, M.; Cai, C.; Zhu, S.; Zhai, W. Experimental study on dynamic performance of typical nonballasted track systems using a full-scale test rig. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2016, 231, 470–481. [Google Scholar] [CrossRef]
- Presle, G.; Hanreich, W.; Mittermayr, P. Austrian track testing and recording car EM 250: Source for wheel-rail interaction analysis. Transp. Res. Rec. 2000, 1713, 22–28. [Google Scholar] [CrossRef]
- Tasaka, H. Overview of N700S confirmation testing car. Jpn. Railw. Eng. 2019, 203, 1–4. [Google Scholar]
- Lenart, M.; Bielecki, A.; Lesot, M.; Petrisor, T.; d’Allonnes, A. Trust dynamics: A case-study on railway sensors. In Proceedings of the 8th International Conference on Sensor Networks, Prague, Czech Republic, 26–27 February 2019; pp. 47–57. [Google Scholar]
- Camci, F.; Eker, Ö.; Baskan, S.; Konur, S. Comparison of sensors and methodologies for effective prognostics on railway turnout systems. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2016, 230, 24–42. [Google Scholar] [CrossRef]
- Jovanović, D.; Milenković, B. The use of fbg sensors in smart railway. In Proceedings of the IEEE STEC-13th Student Project Conference ESTEC-13, Smolenice, Slovakia, 11 October 2020. [Google Scholar]
- Zhang, S.; Lee, W.-K.; Pong, P. Train detection by magnetic field sensing. Sens. Mater. 2013, 25, 423–436. [Google Scholar]
- Machu, Z.; Ksica, F.; Hadas, Z.; Kratochvilova, M.; Podrouzek, J. Sensing rail system with piezoelectric elements. MM Sci. J. 2021, 2021, 4230–4237. [Google Scholar] [CrossRef]
- Farooq, M.; Waseem, M.; Mazhar, S.; Khairi, A.; Kamal, T. A review on Internet of Things (IoT). Int. J. Comput. Appl. 2015, 113, 1–7. [Google Scholar]
- Wortmann, F.; Flüchter, K. Internet of Things. Bus. Inf. Syst. Eng. 2015, 57, 221–224. [Google Scholar] [CrossRef]
- Farhan, L.; Kharel, R.; Kaiwartya, O.; Quiroz, M.; Alissa, A.E.; Abdulsalam, M. A concise review on Internet of Things (IoT)—Problems, challenges and opportunities. In Proceedings of the 11th International Symposium on Communication Systems, Networks, and Digital Signal Processing (CSNDSP 2018), Budapest, Hungary, 18–20 July 2018. [Google Scholar]
- Bessis, N.; Dobre, C. Big Data and Internet of Things: A roadmap for smart environments. In Studies in Computational Intelligence; Springer: New York, NY, USA, 2014; 450p. [Google Scholar]
- Fortuno, G.; Trunfio, P. Internet of Things Based on Smart Objects: Technology, Middleware and Applications; Springer: New York, NY, USA, 2014; 250p. [Google Scholar]
- Krutko, A.; Sedykh, D.; Vorobev, A.; Putintseva, A.; Filippov, Y. Study of stress-strain state of wheelset of freight car during braking. Omsk. Sci. Bull. 2019, 1260, 15–19. [Google Scholar] [CrossRef]
- Abdurashitov, A.Y.; Sychev, V.P. Evaluation of the strain-stress condition of rails. IOP Conf. Ser. Mater. Sci. Eng. 2020, 760, 012001. [Google Scholar] [CrossRef] [Green Version]
- Umanskii, A.; Yur’ev, A.; Dorofeev, V.; Dumova, L. Stress-strain state of metal at the initial stage of railway rails rolling. Izvestiya. Ferr. Metall. 2021, 64, 550–560. [Google Scholar] [CrossRef]
- Ovchinnikov, D.; Kovenkin, D. Stress-strain state of the “wheel-rail” system under different movement conditions. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1151, 012020. [Google Scholar] [CrossRef]
- Telipko, L.; Mamaev, L.; Raksha, S. The subgrade heterogeneity consideration of a railway track when determining its stress-strain state. Science and Transport Progress. Bull. Dnipropetr. Natl. Univ. Railw. Transp. 2018, 6, 101–117. [Google Scholar] [CrossRef] [Green Version]
- Kluchnik, S. Stress-strain state of beam staged connection point of the railway bridge track-way. Science and transport progress. Bull. Dnipropetr. Natl. Univ. Railw. Transp. 2017, 3, 160–170. [Google Scholar] [CrossRef] [Green Version]
- Nafis, A.; Shah, S.; Mandal, N.; Chattopadhyay, G.; Powell, J.; Micenko, P. Improvement of rail creep data to measure the stress state of a tangent continuously welded rail (CWR) track. In Proceedings of the International Heavy Haul Association Conference, Calgary, AB, Canada, 19–22 June 2011. [Google Scholar]
- Kolos, A.F.; Petrova, T.M.; Makhonina, A.O. Full-scale study of stress-strain state of ballastless upper structure construction of rail way in terms of train dynamic load. Procedia Eng. 2017, 189, 429–433. [Google Scholar] [CrossRef]
- Kurhan, D. Determination of load for quasi-static calculations of railway track stress-strain state. Acta Tech. Jaurinensis 2016, 9, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Barabash, M.; Bashinsky, Y.; Korjakins, A. Stress-strain state of the structure in the service area of underground railway. IOP Conf. Ser. Mater. Sci. Eng. 2017, 251, 012100. [Google Scholar] [CrossRef]
- Semenov, A.; Poryvaev, I.; Akhmetdinova, G. Analysis of the stress-strain state of the Forth Rail Bridge structures. Russ. J. Transp. Eng. 2016, 3, 3. [Google Scholar] [CrossRef]
- Kozlov, I. Stress-strain state of railway embankment with the use of mineral geoecoprotective material. Lect. Notes Civ. Eng. 2020, 1, 287–293. [Google Scholar] [CrossRef]
- Nafis, A.; Shah, S.; Mandal, N.; Chattopadhyay, G.; Powell, J. Development of a unified railway track stability management tool to enhance track safety. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2013, 227, 493–516. [Google Scholar]
- Potvin, M.; Trizotto, M.; Dersch, M.; Edwards, J.; Lima, A. A review of parameters affecting rail break gap size using analytical methods. In Proceedings of the Joint Rail Conference, Virtually, 20–21 April 2021. [Google Scholar]
- Prokopev, V.; Zhdanova, T.; Kushkhov, B. Modeling of the stress-strain state of railway wheel and rail in contact. In Advances in Intelligent Systems and Computing; Springer: New York, NY, USA, 2020; Volume 982, pp. 603–614. [Google Scholar]
- Muravev, V.; Tapkov, K.; Volkova, L.; Platunov, A. Strain stress model of the rail with crack in its head and estimation of its operational lifetime. Mater. Sci. Forum 2019, 970, 177–186. [Google Scholar] [CrossRef]
- Muravev, V.; Tapkov, K. Evaluation of strain-stress state of the rails in the production. Devices Methods Meas. 2017, 8, 263–270. [Google Scholar] [CrossRef]
- Snitko, S.; Yakovchenko, A.; Gorbatyuk, S. Accounting method for residual technological stresses in modeling the stress-deformed state of a railway wheel disk. Report 1. Izvestiya. Ferr. Metall. 2021, 64, 337–344. [Google Scholar] [CrossRef]
- Kurhan, D.; Kurhan, M. Modeling the dynamic response of railway track. IOP Conf. Ser. Mater. Sci. Eng. 2019, 708, 012013. [Google Scholar] [CrossRef]
- Giannella, V. Stochastic approach to fatigue crack-growth simulation for a railway axle under input data variability. Int. J. Fatigue 2020, 1144, 106044. [Google Scholar] [CrossRef]
- Giannella, V.; Sepe, R.; Borrelli, A.; De Michele, G.; Armentani, E. Numerical investigation on the fracture failure of a railway axle. Eng. Fail. Anal. 2021, 129, 105680. [Google Scholar] [CrossRef]
- Shaltout, R.; Ulianov, C.; Chen, H.M. Coupled numerical modelling of railway track substructure with vehicle-track interaction. Civ.-Comp. Proc. 2015, 108. [Google Scholar] [CrossRef]
- Erhunmwun, I.; Ikponmwosa, U. Review on finite element method. J. Appl. Sci. Environ. Manag. 2017, 21, 999. [Google Scholar] [CrossRef] [Green Version]
- Jagota, V.; Sethi, A.; Kumar, D.K. Finite element method: An overview. Walailak J. Sci. Technol. 2013, 10, 1–8. [Google Scholar]
- Cen, S.; Li, C.F.; Rajendran, S.; Hu, Z. Advances in finite element method. Math. Probl. Eng. 2014, 2014, 206369. [Google Scholar] [CrossRef]
- Shlyannikov, V.; Yarullin, R.; Yakovlev, M.; Giannella, V.; Citarella, R. Mixed-mode crack growth simulation in aviation engine compressor disk. Eng. Fract. Mech. 2021, 246, 107617. [Google Scholar] [CrossRef]
- Fellinger, J.; Citarella, R.; Giannella, V.; Lepore, M.; Sepe, R.; Czerwinski, M.; Herold, F.; Stadler, R. Overview of fatigue life assessment of baffles in Wendelstein 7-X. Fusion Eng. Des. 2018, 136, 292–297. [Google Scholar] [CrossRef] [Green Version]
- Armentani, E.; Caputo, F.; Esposito, L.; Giannella, V.; Citarella, R. Multibody Simulation for the Vibration Analysis of a Turbocharged Diesel Engine. Appl. Sci. 2018, 8, 1192. [Google Scholar] [CrossRef] [Green Version]
- Ovchinnikov, D.; Pokatsky, V.; Gallyamov, D. Factors affecting the dynamic rail canting of the railway track. Transp. Res. Procedia 2021, 54, 544–551. [Google Scholar] [CrossRef]
- Ovchinnikov, D.V.; Pokatsky, V.A.; Gallyamov, D.I. Determination of the modulus of elasticity of the under-rail foundation of a railway track by the finite element method. Transp. Infrastruct. Sib. Reg. 2019, 1, 585–591. [Google Scholar]
- Ovchinnikov, D.V.; Pokatskiy, V.A. Determination of the stress-strain state of the main site of the subgrade depending on the thickness of the ballast layer and sand cushion at different axle loads. Sci. Educ. Transp. 2016, 2, 76–180. [Google Scholar]
- Menetrey, P.; Willam, K.J. Triaxial failure criterion for concrete and its generalization. ACI Struct. J. 1995, 92, 311–318. [Google Scholar]
Vertical Wheel Force, kN | Side Force, kN | Inner Sole Edge | Outer Sole Edge | Moving the Rail (Wheel between the Sleepers) | Subgrade (Wheel between the Sleepers) |
---|---|---|---|---|---|
98.1 | 0 | 43.88 | 31.29 | 0.7 | −0.04787 |
98.1 | 49.05 | 2.341 | 82.409 | 0.93 | −0.047068 |
98.1 | 98.1 | −18.344 | 133.28 | 1.28 | −0.049891 |
122.63 | 0 | 54.495 | 39.002 | 0.87 | −0.057487 |
122.63 | 49.05 | 10.511 | 90.069 | 1.07 | −0.05667 |
122.63 | 98.1 | −13.764 | 140.91 | 1.42 | −0.058574 |
147.15 | 0 | 65.134 | 46.598 | 1.04 | −0.067109 |
147.15 | 49.05 | 18.719 | 97.654 | 1.22 | −0.066353 |
147.15 | 98.1 | −9.1453 | 148.53 | 1.56 | −0.068139 |
Simulation Step | Vertical Wheel Force, kN | Lateral Force, kN | Inner Sole Edge | Outer Sole Edge | Moving the Rail (Wheel between Sleepers) | Subgrade (Wheel between Sleepers) |
---|---|---|---|---|---|---|
1 | 98.100 | 49.050 | 2.341 | 82.409 | 0.930 | −0.047 |
1 | 98.100 | 61.330 | −2.838 | 95.145 | 1.000 | −0.048 |
1 | 98.100 | 98.100 | −18.344 | 133.280 | 1.280 | −0.050 |
2 | 122.630 | 0.000 | 54.495 | 39.002 | 0.870 | −0.057 |
2 | 122.630 | 33.620 | 24.347 | 74.004 | 1.000 | −0.057 |
2 | 122.630 | 49.050 | 10.511 | 90.069 | 1.070 | −0.057 |
3 | 98.100 | 61.330 | −2.838 | 95.145 | 1.000 | −0.048 |
3 | 110.400 | 47.435 | 10.794 | 84.545 | 1.000 | −0.052 |
3 | 122.630 | 33.620 | 24.347 | 74.004 | 1.000 | −0.057 |
Final state | 110.400 | 47.435 | 10.794 | 84.545 | 1.000 | −0.052 |
Vertical Wheel Force, kN | Lateral Force, kN | Inner Sole Edge | Outer Sole Edge | Rail Movement | Subgrade |
---|---|---|---|---|---|
1 | 0.03811 | 0.114333 | 0.102891 | −0.01411 | 0.010177 |
1 | 0.00582 | 0.120959 | −0.01244 | −0.02912 | |
1 | 0.274156 | −0.11147 | −0.00882 | ||
1 | 0.057253 | 0.024453 | |||
1 | −0.1091 | ||||
1 |
Vertical Wheel Force, kN | Lateral Force, kN | Inner Sole Edge | Outer Sole Edge | Rail Movement | Subgrade |
---|---|---|---|---|---|
1 | 0.092505 | 0.030213 | 0.040231 | 0.041666 | −0.01078 |
1 | 0.048245 | −0.00705 | 0.014493 | −0.0382 | |
1 | −0.34413 | 0.083251 | −0.09929 | ||
1 | −0.04389 | −0.00759 | |||
1 | 0.27666 | ||||
1 |
Vertical Wheel Force, kN | Lateral Force, kN | Inner Sole Edge | Outer Sole Edge | Rail Movement | Subgrade |
---|---|---|---|---|---|
1 | −0.04647 | −0.02142 | 0.007001 | −0.02553 | 0.010177 |
1 | 0.069503 | −0.10857 | −0.02469 | 0.011199 | |
1 | −0.08434 | −0.04817 | 0.126454 | ||
1 | −0.00148 | 0.007194 | |||
1 | −0.24768 | ||||
1 |
Rolling Stock | Number of Axles in the Bogie | Force Transmitted from the Wheel to the Rail, kN | Distance between the Axles of the Wheels, m | Equivalent Load, kN | Vertical Rail Deflection, mm |
---|---|---|---|---|---|
Passenger locomotive | 3 | 105.5 | 2.90 | 104.00 | 0.53 |
Passenger coach | 2 | 78.5 | 2.40 | 75.80 | 0.39 |
Freight locomotive | 2 | 112.8 | 3.00 | 111.56 | 0.57 |
Freight car | 2 | 122.6 | 1.84 | 117.95 | 0.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avsievich, A.; Avsievich, V.; Avsievich, N.; Ovchinnikov, D.; Ivaschenko, A. Railway Track Stress–Strain Analysis Using High-Precision Accelerometers. Appl. Sci. 2021, 11, 11908. https://doi.org/10.3390/app112411908
Avsievich A, Avsievich V, Avsievich N, Ovchinnikov D, Ivaschenko A. Railway Track Stress–Strain Analysis Using High-Precision Accelerometers. Applied Sciences. 2021; 11(24):11908. https://doi.org/10.3390/app112411908
Chicago/Turabian StyleAvsievich, Alexandr, Vladimir Avsievich, Nikita Avsievich, Dmitry Ovchinnikov, and Anton Ivaschenko. 2021. "Railway Track Stress–Strain Analysis Using High-Precision Accelerometers" Applied Sciences 11, no. 24: 11908. https://doi.org/10.3390/app112411908
APA StyleAvsievich, A., Avsievich, V., Avsievich, N., Ovchinnikov, D., & Ivaschenko, A. (2021). Railway Track Stress–Strain Analysis Using High-Precision Accelerometers. Applied Sciences, 11(24), 11908. https://doi.org/10.3390/app112411908