Study on the Law of Harmful Gas Release from Limnoperna fortunei (Dunker 1857) during Maintenance Period of Water Tunnel Based on K-Means Outlier Treatment
Abstract
:1. Introduction
2. Tests and Methods
2.1. Collection and Treatment of Limnoperna fortunei
2.2. Model Test Design and Operation Monitoring
2.3. Preprocessing of Gas Concentration Data
2.3.1. Data Detrending Based on Wavelet Decomposition
2.3.2. Outlier Recognition Based on K-Means Algorithm
2.4. Gas Release Law Analysis
3. Results and Discussion
3.1. Morphological Changes of Limnoperna fortunei during Putrification
3.2. Preprocessing of Gas Monitoring Data
3.2.1. Analysis of the Original Data Set
3.2.2. Pretreatment of NH3 and H2S Concentration Data
High- and Low-Frequency Signal Features Are Extracted by Wavelet Decomposition
Identify Outliers of High-Frequency Signals Based on K-Means Algorithm
3.3. Release Characteristics of Harmful Gases in the Putrefying Process of Limnoperna fortunei
3.3.1. The Change of Gas Release Concentration with the Time of Limnoperna fortunei Leaving Water
3.3.2. Change of Harmful Gas Concentration with Density of Limnoperna fortunei
3.3.3. Mathematical Model of Harmful Gas Concentration Release Characteristics
3.4. Potential Risk Analysis of Harmful Substances Released by Putrid Limnoperna fortunei
4. Conclusions
- For outliers in the original gas concentration data set, wavelet decomposition and K-means algorithm are used to identify and process outliers, which can effectively reduce the standard deviation and coefficient of variation of the data set and improve the accuracy of the data set;
- NH3 is the main harmful gas released in the process of purification, followed by H2S, with a maximum concentration of 307.9454 mg/m3 and 5.0946 mg/m3, respectively. Only a very small amount of CH4 was detected during the process, and the maximum concentration did not exceed 0.02%;
- The quantitative relationship between NH3 and H2S and Limnoperna fortunei density and dewatering time all met the n-order polynomial linear regression model (R2 > 99%), that is, with the increase in Limnoperna fortunei density or dewatering time, the concentration of NH3 and H2S gradually increased;
- The concentration of NH3 released during the corruption of Limnoperna fortunei can reach the level of health and safety threat to workers at the earliest day out of water, and the accumulated concentration of NH3 far exceeds the exposure limit (30 mg/m3) with the increase in the time out of water of Limnoperna fortunei. The influence of H2S and CH4 concentration on workers is still within an acceptable level.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Furlan-Murari, P.J.; Ruas, C.D.F.; Ruas, E.A.; Benício, L.M.; Urrea-Rojas, A.M.; Poveda-Parra, A.R.; Murari, E.; De Lima, E.C.S.; De Souza, F.P.; Lopera-Barrero, N.M. Structure and genetic variability of golden mussel (Limnoperna fortunei) populations from Brazilian reservoirs. Ecol. Evol. 2019, 9, 2706–2714. [Google Scholar] [CrossRef]
- Boltovskoy, D.; Xu, M.; Nakano, D. Impacts of Limnoperna Fortunei on Man-Made Structures and Control Strategies: General Overview; Springer: Singapore, 2015; pp. 375–393. [Google Scholar]
- Magara, Y.; Matsui, Y.; Goto, Y.; Yuasa, A. Invasion of the non-indigenous nuisance mussel, Limnoperna fortunei, into water supply facilities in Japan. J. Water Supply Res. Technol. 2001, 50, 113–124. [Google Scholar] [CrossRef]
- Ernandes-Silva, J.; Pinha, G.D.; Mormul, R.P. Environmental variables driving the larval distribution of Limnoperna fortunei in the upper Paraná River floodplain, Brazil. Acta Limnol. Bras. 2017, 29, 108. [Google Scholar] [CrossRef] [Green Version]
- Darrigran, G.; Damborenea, C.; De Drago, I.E.; Paira, A.R.; Drago, E.C.; Archuby, F. Invasion process of Limnoperna fortunei (Bivalvia: Mytilidae): The case of Uruguay River and emissaries of the Esteros del Iberá Wetland, Argentina. Zoologia 2012, 29, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Pessotto, M.A.; Nogueira, M.G. More than two decades after the introduction of Limnoperna fortunei (Dunker 1857) in La Plata Basin. Braz. J. Biol. 2018, 78, 773–784. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Wang, Z.; Zhao, N. Experimental study of colonization of Limnoperna fortunei (dunker 1857) in the Xizhijiang River. In Proceedings of the Blueprint for Sustainable Watersheds Workshop Beijing, Beijing, China, 31 July–4 August 2011. [Google Scholar]
- Darrigran, G. Potential Impact of Filter-feeding Invaders on Temperate Inland Freshwater Environments. Biol. Invasions 2002, 4, 145–156. [Google Scholar] [CrossRef]
- Brugnoli, E.; Clemente, J.; Boccardi, L.; Borthagaray, A.; Scarabino, F. Golden mussel Limnoperna fortunei (Bivalvia: Mytilidae) distribution in the main hydrographical basins of Uruguay: Update and predictions. An. Acad. Bras. Ciências 2005, 77, 235–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira, M.D.; Takeda, A.M.; de Barros, L.F.; Barbosa, D.S.; de Resende, E.K. Invasion by Limnoperna fortunei(Dunker,1857)(Bivalvia, Mytilidae)of the Pantanal Wetland, Brazil. Biol. Invasions 2006, 18, 97–104. [Google Scholar] [CrossRef]
- Xu, M.; Darrigran, G.; Wang, Z.; Zhao, N.; Lin, C.C.; Pan, B. Experimental study on control of Limnoperna fortunei biofouling in water transfer tunnels. HydroResearch 2015, 9, 248–258. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, M.; Wang, Z.; Liu, W.; Yu, D. Experimental study on the effect of turbulence in pipelines on the mortality of Limnoperna fortunei veligers. Ecol. Eng. 2017, 109, 101–118. [Google Scholar] [CrossRef]
- Ocaño-Higuera, V.; Marquez-Ríos, E.; Canizales-Dávila, M.; Castillo-Yáñez, F.; Pacheco-Aguilar, R.; Sanchez, M.E.L.; García-Orozco, K.; Graciano-Verdugo, A.Z. Postmortem changes in cazon fish muscle stored on ice. Food Chem. 2009, 116, 933–938. [Google Scholar] [CrossRef]
- Peck, M.W.; Stringer, S.C. The safety of pasteurised in-pack chilled meat products with respect to the foodborne botulism hazard. Meat Sci. 2005, 70, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Gram, L.; Dalgaard, P. Fish spoilage bacteria—problems and solutions. Curr. Opin. Biotechnol. 2002, 13, 262–266. [Google Scholar] [CrossRef]
- Dalgaard, P. Modelling of microbial activity and prediction of shelf life for packed fresh fish. Int. J. Food Microbiol. 1995, 26, 305–317. [Google Scholar] [CrossRef]
- Doyle, M.P. Food Microbiology: Fundamentals and Frontiers, 3rd ed.; ASM Press: Washington, DC, USA, 2007. [Google Scholar]
- Wang, H.; Zhang, J.; Zhu, Y.; Wang, X.; Shi, W. Volatile components present in different parts of grass carp. J. Food Biochem. 2018, 42, e12668. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Y.; Zhang, J.; Wang, X.; Shi, W. Study on changes in the quality of grass carp in the process of postmortem. J. Food Biochem. 2018, 42, e12683. [Google Scholar] [CrossRef]
- Vogel, B.F.; Venkateswaran, K.; Satomi, M.; Gram, L. Identification of Shewanella baltica as the Most Important H2S-Producing Species during Iced Storage of Danish Marine Fish. Appl. Environ. Microbiol. 2005, 71, 6689–6697. Available online: http://jama.jamanetwork.com/article.aspx?articleid=294000 (accessed on 1 November 2021). [CrossRef] [PubMed] [Green Version]
- Dabadé, D.S.; Azokpota, P.; Nout, M.R.; Hounhouigan, D.J.; Zwietering, M.H.; Besten, H.M.D. Prediction of spoilage of tropical shrimp (Penaeus notialis) under dynamic temperature regimes. Int. J. Food Microbiol. 2015, 210, 121–130. [Google Scholar] [CrossRef]
- Wang, H.; Luo, Y.; Huang, H.; Xu, Q. Microbial succession of grass carp (Ctenopharyngodon idellus) filets during storage at 4 °C and its contribution to biogenic amines’ formation. Int. J. Food Microbiol. 2014, 190, 66–71. [Google Scholar] [CrossRef]
- Dong, Q.; Lin, Y.; Bi, J.; Yuan, H. An Integrated Deep Neural Network Approach for Large-Scale Water Quality Time Series Prediction. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019. [Google Scholar]
- Kallummil, S.; Kalyani, S. Noise Statistics Oblivious GARD For Robust Regression With Sparse Outliers. IEEE Trans. Signal Process. 2018, 67, 383–398. [Google Scholar] [CrossRef]
- Mallat, S.G.A. Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef] [Green Version]
- Mallat, S.; Hwang, W.L. Singularity Detection and Processing with Wavelets. IEEE Trans. Inf. Theory 1992, 38, 617–643. [Google Scholar] [CrossRef]
- Xu, M.Z.; Wang, Z.Y.; Duan, X.H.; Zhuang, M.Q.; de Souza, F.T. Ecological measures of controlling invasion of golden mussel (Limnoperna fortune) in water transfer systemsn water transfer systems. In Proceedings of the 33rd Iahr Congress, Water Engineering for A Sustainable Environment, Vancouver, BC, Canada, 9–14 August 2009; pp. 1609–1616. [Google Scholar]
- Bai, L.; Liang, J.; Sui, C.; Dang, C. Fast global k-means clustering based on local geometrical information. Inf. Sci. 2013, 245, 168–180. [Google Scholar] [CrossRef]
- Zhang, Z.; Feng, Q.; Huang, J.; Guo, Y.; Xu, J.; Wang, J. A local search algorithm for k-means with outliers. Neurocomputing 2021, 450, 230–241. [Google Scholar] [CrossRef]
- Construction Specifications on underground Excavation Engineering of Hydraulic Structures: SL378-2007; Ministry of Water Resources of the People’s Republic of China: Beijing, China, 2007; pp. 53–54. (In Chinese)
- Code for Design of Occupational Safety and Health of Water Resources and Hydropower Projects: GB 50706-2011; National Standards of People’s Republic of China: Beijing, China, 2011; p. 15. (In Chinese)
- Occupational Exposure Limits for Hazardous Agents in the Workplace-Chemical Hazardous Agents: GBZ 2.1-2007; National Health Commission of the People’s Republic of China: Beijing, China, 2007; pp. 3–16. (In Chinese)
Number Density (×104 Mussels/m2) | Samples Size (Mussels/100 cm2) | Sample Weight (kg/100 cm2) | Number Density (×104 Mussels/m2) | Samples Size (Mussels/100 cm2) | Sample Weight (kg/100 cm2) |
---|---|---|---|---|---|
0.5 | 50 | 0.0204 | 4.0 | 400 | 0.1465 |
1.0 | 100 | 0.0409 | 4.5 | 450 | 0.1778 |
1.5 | 150 | 0.0645 | 5.0 | 500 | 0.1973 |
2.0 | 200 | 0.0840 | 5.5 | 550 | 0.2133 |
2.5 | 250 | 0.0945 | 6.0 | 600 | 0.2319 |
3.0 | 300 | 0.1146 | 6.5 | 650 | 0.2533 |
3.5 | 350 | 0.1270 | 7.0 | 700 | 0.2803 |
0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | ||
Rawdata | δ | 16.767058 | 22.114135 | 34.389931 | 42.714861 | 33.365958 | 46.982665 | 55.987208 | 52.982421 | 60.678893 | 66.830604 | 64.984631 | 73.981082 | 102.485530 | 118.011266 |
17.770983 | 37.802422 | 50.484537 | 51.662313 | 44.069167 | 73.259108 | 61.901134 | 79.378196 | 86.892091 | 96.132488 | 122.103267 | 110.227919 | 135.060994 | 175.671261 | ||
CV | 0.943508 | 0.584993 | 0.681197 | 0.826809 | 0.757127 | 0.641322 | 0.904462 | 0.667468 | 0.698325 | 0.695193 | 0.532210 | 0.671165 | 0.758809 | 0.671773 | |
Cmax | 47.977712 | 84.960053 | 105.979206 | 113.226310 | 123.215786 | 157.938219 | 205.106574 | 207.160693 | 216.635426 | 289.989337 | 329.960443 | 309.307054 | 470.907315 | 484.512967 | |
Repair data | δ | 16.716482 | 21.991144 | 34.309874 | 42.627320 | 36.779411 | 42.726538 | 55.723427 | 52.958790 | 61.994448 | 60.316471 | 58.361717 | 72.548227 | 82.279642 | 107.003084 |
17.762965 | 37.784827 | 50.472732 | 51.694684 | 55.346273 | 66.995734 | 61.961222 | 79.515985 | 95.150493 | 86.877288 | 118.946845 | 110.122408 | 124.891449 | 170.771985 | ||
CV | 0.941086 | 0.582010 | 0.679770 | 0.824598 | 0.664533 | 0.637750 | 0.899327 | 0.666014 | 0.651541 | 0.694272 | 0.490654 | 0.658796 | 0.658809 | 0.626585 | |
Cmax | 47.607156 | 74.841119 | 96.445083 | 113.226300 | 122.763174 | 132.529708 | 162.992975 | 175.852872 | 173.959145 | 177.767343 | 198.669919 | 219.128428 | 255.421770 | 307.945418 |
0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rawdata | δ | 0.034248 | 0.044883 | 0.098694 | 0.225369 | 0.259643 | 0.414985 | 0.449954 | 0.519918 | 0.563922 | 0.714369 | 0.909262 | 1.120077 | 1.628209 | 1.636846 |
0.166079 | 0.160989 | 0.244019 | 0.454042 | 0.399490 | 0.799765 | 1.020833 | 1.032471 | 1.407727 | 1.805642 | 2.169511 | 2.791567 | 3.104072 | 3.509659 | ||
CV | 0.206214 | 0.278797 | 0.404454 | 0.496363 | 0.649936 | 0.518884 | 0.440772 | 0.503566 | 0.400590 | 0.395631 | 0.419109 | 0.401236 | 0.524540 | 0.466383 | |
Cmax | 0.190918 | 0.207953 | 0.322143 | 0.666502 | 0.755783 | 1.217786 | 1.426353 | 1.628936 | 1.875821 | 2.404795 | 3.192408 | 3.758756 | 4.769833 | 5.094600 | |
Repair data | δ | 0.034246 | 0.044800 | 0.098694 | 0.225068 | 0.259641 | 0.414963 | 0.449953 | 0.519777 | 0.563607 | 0.688696 | 0.908820 | 1.018932 | 1.512646 | 1.633315 |
0.166080 | 0.161011 | 0.244019 | 0.454195 | 0.399495 | 0.799778 | 1.020833 | 1.032544 | 1.407855 | 1.818383 | 2.169267 | 2.887395 | 3.212002 | 3.511402 | ||
CV | 0.206202 | 0.278243 | 0.404451 | 0.495531 | 0.649925 | 0.518847 | 0.440770 | 0.503394 | 0.400331 | 0.378741 | 0.418953 | 0.352890 | 0.470936 | 0.465146 | |
Cmax | 0.190751 | 0.207947 | 0.322159 | 0.666285 | 0.755245 | 1.218584 | 1.426305 | 1.628952 | 1.875854 | 2.406163 | 3.192408 | 3.758756 | 4.769833 | 5.094600 |
Density (×104 Mussels/m2) | R2 | Serial Number | |
---|---|---|---|
0.5 | 99.85% | Equation (6) | |
1.0 | 99.64% | Equation (7) | |
1.5 | 99.85% | Equation (8) | |
2.0 | 99.70% | Equation (9) | |
2.5 | 99.78% | Equation (10) | |
3.0 | 99.86% | Equation (11) | |
3.5 | 99.91% | Equation (12) | |
4.0 | 99.85% | Equation (13) | |
4.5 | 99.86% | Equation (14) | |
5.0 | 99.80% | Equation (15) | |
5.5 | 99.89% | Equation (16) | |
6.0 | 99.40% | Equation (17) | |
6.5 | 99.70% | Equation (18) | |
7.0 | 99.80% | Equation (19) |
Density (×104 Mussels/m2) | R2 | Serial Number | |
---|---|---|---|
0.5 | 98.55% | Equation (20) | |
1.0 | 98.20% | Equation (21) | |
1.5 | 98.80% | Equation (22) | |
2.0 | 99.95% | Equation (23) | |
2.5 | 99.46% | Equation (24) | |
3.0 | 99.75% | Equation (25) | |
35 | 99.76% | Equation (26) | |
4.0 | 99.86% | Equation (27) | |
4.5 | 99.86% | Equation (28) | |
5.0 | 99.84% | Equation (29) | |
5.5 | 99.66% | Equation (30) | |
6.0 | 99.73% | Equation (31) | |
6.5 | 99.89% | Equation (32) | |
7.0 | 99.95% | Equation (33) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Wang, X.; Li, S.; Shen, J.; Wang, J.; Liu, C.; Zheng, Y.; Chen, Y.; Ding, C. Study on the Law of Harmful Gas Release from Limnoperna fortunei (Dunker 1857) during Maintenance Period of Water Tunnel Based on K-Means Outlier Treatment. Appl. Sci. 2021, 11, 11995. https://doi.org/10.3390/app112411995
Wang R, Wang X, Li S, Shen J, Wang J, Liu C, Zheng Y, Chen Y, Ding C. Study on the Law of Harmful Gas Release from Limnoperna fortunei (Dunker 1857) during Maintenance Period of Water Tunnel Based on K-Means Outlier Treatment. Applied Sciences. 2021; 11(24):11995. https://doi.org/10.3390/app112411995
Chicago/Turabian StyleWang, Ruonan, Xiaoling Wang, Songmin Li, Jupeng Shen, Jianping Wang, Changxin Liu, Yazhi Zheng, Yitian Chen, and Chaoyuan Ding. 2021. "Study on the Law of Harmful Gas Release from Limnoperna fortunei (Dunker 1857) during Maintenance Period of Water Tunnel Based on K-Means Outlier Treatment" Applied Sciences 11, no. 24: 11995. https://doi.org/10.3390/app112411995
APA StyleWang, R., Wang, X., Li, S., Shen, J., Wang, J., Liu, C., Zheng, Y., Chen, Y., & Ding, C. (2021). Study on the Law of Harmful Gas Release from Limnoperna fortunei (Dunker 1857) during Maintenance Period of Water Tunnel Based on K-Means Outlier Treatment. Applied Sciences, 11(24), 11995. https://doi.org/10.3390/app112411995