Effect of Bentonite Content and Hydration Time on Mechanical Properties of Sand–Bentonite Mixture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Test Program
3. Results of Calcium Bentonite–Sand Mixture
3.1. Effect of Calcium Bentonite Content on Shear Strength
3.2. Effect of Hydration Time
3.3. Effect of Calcium Bentonite Content on the Stiffness
3.4. Comparisons between Sodium Bentonite and Calcium Bentonite
4. Micro-Mechanical Behavior of Sand–Bentonite Mixture
4.1. DEM Model Set-Up
4.2. Simulation Results and Discussion
5. Conclusions
- (1)
- Under the same bentonite and the same confining pressure, the shear strength of the sand–bentonite mixture specimens was decreased gradually with the increasing of bentonite contents;
- (2)
- By comparing the shear strength of mixture specimens mixed with calcium bentonite and sodium bentonite, it can be found that the peak shear stress of calcium bentonite was higher than that of sodium bentonite mixed sand under the same hydration time and bentonite content;
- (3)
- The 3D discrete element method results show that the force transfer structure changed with the increase in bentonite contents. The distribution of normal contact force changed obviously with the increase in bentonite content. The contact force distributed more evenly as bentonite was involved in force transfer.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sample-Lord, K.M.; Ahmed, M.; Malusis, M.A. Diffusion through soil-bentonite backfill from a constructed vertical cutoff wall. Soils Found. 2021, 61, 429–443. [Google Scholar] [CrossRef]
- Vipulanandan, C.; Mohammed, A. Effect of drilling mud bentonite contents on the fluid loss and filter cake formation on a field clay soil formation compared to the API fluid loss method and characterized using Vipulanandan models. J. Pet. Sci. Eng. 2020, 189, 107029. [Google Scholar] [CrossRef]
- Zainab, B.; Wireko, C.; Li, D.; Tian, K.; Abichou, T. Hydraulic conductivity of bentonite-polymer geosynthetic clay liners to coal combustion product leachates. Geotext. Geomembr. 2021, 49, 1129–1138. [Google Scholar] [CrossRef]
- Yoon, S.; Kim, M.S.; Kim, G.Y.; Lee, S.R. Contemplation of relative hydraulic conductivity for compacted bentonite in a high-level radioactive waste repository. Ann. Nucl. Energy 2021, 161, 108439. [Google Scholar] [CrossRef]
- Su, W.; Wang, Q.; Ye, W.M.; Deng, Y.F.; Chen, Y.G. Swelling pressure of compacted MX80 bentonite/sand mixture prepared by different methods. Soils Found. 2021, 4, 1142–1150. [Google Scholar] [CrossRef]
- Komine, H.; Ogata, N. Experimental study on swelling characteristics of compacted bentonite. Can. Geotech. J. 1994, 31, 478–490. [Google Scholar] [CrossRef]
- Ray, S.; Mishra, A.K.; Kalamdhad, A.S. Hydraulic performance, consolidation characteristics and shear strength analysis of bentonites in the presence of fly-ash, sewage sludge and paper-mill leachates for landfill application. J. Environ. Manag. 2022, 302 Pt A, 113977. [Google Scholar] [CrossRef]
- Shang, J.Q.; Lo, K.Y.; Quigley, R.M. Quantitative determination of potential distribution in Stern-Gouy double-layer model. Can. Geotech. J. 1994, 31, 624–636. [Google Scholar] [CrossRef]
- Oldham, K. A Gouy-Chapman-Stern model of the double layer at a (metal)/(ionic liquid) interface. J. Electroanal. Chem. 2007, 613, 131–138. [Google Scholar] [CrossRef]
- Jo, H.Y.; Katsumi, T.; Benson, C.H.; Edil, T.B. Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions. J. Geotech. Geoenviron. Eng. 2001, 127, 557–567. [Google Scholar] [CrossRef]
- Verwey, E.J.W. Theory of the stability of lyophobic colloids. Philips Res. Rep. 1945, 1, 33–49. [Google Scholar]
- Lyklema, J. Principles of the stability of lyophobic colloidal dispersions in non-aqueous media. Adv. Colloid Interface Sci. 1968, 2, 67–114. [Google Scholar] [CrossRef]
- Pradhan, S.; Katti, K.; Katti, D. Evolution of molecular interactions in the interlayer of Na-montmorillonite swelling clay with increasing hydration. Intent. J. Geomech. 2015, 15, 04014073. [Google Scholar] [CrossRef]
- Komine, S.R.; Katti, D.; Ghosh, P.; Katti, K. Evolution of mechanical response of sodium montmorillonite interlayer with increasing hydration by molecular dynamics. Langmuir 2005, 21, 8069–8076. [Google Scholar]
- Park, S.-S.; Kim, Y.-S. Liquefaction Resistance of Sands Containing Plastic Fines with Different Plasticity. J. Geotech. Geoenviron. Eng. 2013, 139, 825–830. [Google Scholar] [CrossRef]
- Abedi, M.; Yasrobi, S. Effects of plastic fines on the instability of sand. Soil Dyn. Earthq. Eng. 2010, 30, 61–67. [Google Scholar] [CrossRef]
- Carmine, P.P.; James, R.M., II. Effects of Nonplastic Fines on the Liquefaction Resistance of Sands. J. Geotech. Geoenviron. Eng. 2001, 127, 408–415. [Google Scholar]
- Heng, C.Y.; He, M.C.; Qiu, Y.H. Experimental study of liquefaction-resistant characteristics of clayey sand. J. Eng. Geol. 2001, 9, 339–344. [Google Scholar]
- Chang, W.J.; Hong, M.L. Effects of clay content on liquefaction characteristics of gap-graded clayey sands. Soils Found. 2008, 48, 101–114. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, K.; Koseki, J. Cyclic shear strength offines-containing sands. In Earthquake Geotechnical Engineering, Discussion Session on Influence of Local Conditions on Seismic Response, Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro; A.A. Balkema: Amsterdam, The Netherlands, 1989; pp. 101–106. [Google Scholar]
- Vucetic, M.; Dobry, R. Effect of Soil Plasticity on Cyclic Response. J. Geotech. Eng. 1991, 117, 89–107. [Google Scholar] [CrossRef]
- Seed, H.B.; Wong, R.T.; Idriss, I.M.; Tokimatsu, K. Moduli and damping factors for dynamic analyses of cohesionless soils. J. Eng. Geol. 1986, 112, 1016–1032. [Google Scholar] [CrossRef]
- Koester, J.P. The influence of fines type and content on cyclic strength. Ground Fail. Seism. Cond. 1994, 44, 17–33. [Google Scholar]
- Polito, C.P. The effects of non-plastic and plastic fines on the liquefaction of sandy soils. Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 1999. [Google Scholar]
- Zhang, H.Y.; Tan, Y.; Zhu, F.; He, D.J.; Zhu, J.H. Shrinkage property of bentonite-sand mixtures as influenced by sand content and water salinity. Constr. Build. Mater. 2019, 224, 78–88. [Google Scholar] [CrossRef]
- Xu, D.S.; Tang, Z.Y.; Zhang, L. Interpretation of coarse effect in simple shear behavior of binary sand-gravel mixture by DEM with authentic particle shape. Constr. Build. Mater. 2019, 195, 292–304. [Google Scholar] [CrossRef]
- Alaei, E.; Mahboubi, A. A discrete model for simulating shear strength and deformation behaviour of rockfill material, considering the particle breakage phenomenon. Granul. Matter 2012, 14, 707–717. [Google Scholar] [CrossRef]
- Liu, Y.M.; Mao, H.J.; Xu, C.M.; Zhang, Y. DEM investigation on the mechanical behavior of mudstone in the hollow cylinder torsional shear test. Comput. Geotech. 2021, 137, 104236. [Google Scholar] [CrossRef]
- Duan, K.; Kwok, C.Y.; Ma, X. DEM simulations of sandstone under true triaxial compressive tests. Acta Geotech. 2017, 12, 495–510. [Google Scholar] [CrossRef]
- Xu, D.S.; Tang, J.Y.; Zou, Y.; Rui, R.; Liu, H.B. Macro and micro investigation of gravel content on simple shear behavior of sand-gravel mixture. Constr. Build. Mater. 2019, 221, 730–744. [Google Scholar] [CrossRef]
- Shen, J.H.; Xu, D.S.; Liu, Z.W.; Wei, H. Effect of particle characteristics stress on the mechanical properties of cement mortar with coral sand. Constr. Build. Mater. 2020, 260, 119836. [Google Scholar] [CrossRef]
- Xu, D.S.; Zhao, Y.M.; Liu, H.B.; Zhu, H.H. Deformation Monitoring of Metro Tunnel with a New Ultrasonic-Based System. Sensors 2017, 17, 1758. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.-Z.; Xu, D.-S.; Meng, Q.-S. A Newly Designed Fiber-Optic Based Earth Pressure Transducer with Adjustable Measurement Range. Sensors 2018, 18, 932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ASTM. D6913.3409. Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieves Analysis; ASTM: West Conshohocken, PA, USA, 2004. [Google Scholar]
- ASTM. D7382.20201. Standard Test Methods for Determination of Maximum Dry Unit Weight and Water Content Range for Effective Compaction of Granular Soils Using a Vibrating Hammer; ASTM: West Conshohocken, PA, USA, 2008. [Google Scholar]
- ASTM. D4254.33925. Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density; ASTM: West Conshohocken, PA, USA, 2016. [Google Scholar]
- ASTM. D854.30698. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer; ASTM: West Conshohocken, PA, USA, 2016. [Google Scholar]
- ADTM. D4318.8194. Standard Test Methods for Liquid Limit, Plastic Limit and Plasticity Index of Soils; ASTM: West Conshohocken, PA, USA, 2017. [Google Scholar]
- ASTM. D7181.21521. Test Method for Consolidated Drained Triaxial Compression Test for Soils; ASTM: West Conshohocken, PA, USA, 2020. [Google Scholar]
- Mohtar, C. Pure Fluid Engineering: An Autoadaptive Design for Liquefaction Mitigation. Ph.D. Dissertation, Purdue University, West Lafaytte, IN, USA, 2008. [Google Scholar]
No. | Bentonite Content/% | Confining Pressure/kPa | Hydration Time/h |
---|---|---|---|
1 | 0 | 200 | / |
2 | 0 | 300 | / |
3 | 0 | 400 | / |
4 | 5 | 200 | 48 |
5 | 5 | 300 | 48 |
6 | 5 | 400 | 48 |
7 | 5 | 200 | 24 |
8 | 5 | 300 | 24 |
9 | 5 | 400 | 24 |
10 | 5 | 200 | 40 |
11 | 10 | 200 | 48 |
12 | 10 | 300 | 48 |
13 | 10 | 400 | 48 |
14 | 10 | 200 | 24 |
15 | 10 | 200 | 40 |
Maximum Deviator Stress (kPa) | Bentonite Content | ||||||
---|---|---|---|---|---|---|---|
Sodium Bentonite (Na+) | Calcium Bentonite (Ca2+) | ||||||
5% | 10% | 15% | 5% | 10% | 15% | ||
Confining pressure (kPa) | 200 | 591.68 | 581.55 | 542.94 | 690.16 | 669.48 | 656.54 |
300 | 936.20 | 925.97 | 865.15 | 1027.26 | 989.32 | 901.13 | |
400 | 1217.75 | 1130.82 | 1107.21 | 1229.86 | 1196.67 | 1116.39 |
Parameters | Sand | Bentonite | Loading Surface | Cylinder Wall |
---|---|---|---|---|
Normal stiffness (N∙m) | 1 × 108 | 1 × 107 | 1 × 108 | 1 × 106 |
Tangential stiffness (N∙m) | 1 × 108 | 1 × 107 | 1 × 108 | 1 × 106 |
Density (kg/m3) | 2600 | 2000 | - | - |
Coefficient of friction | 0.5 | - | 0.7 | 0.2 |
Damping (N/ (m/s)) | 0.7 | 0.7 | - | - |
Equivalent elastic modulus (Pa) | 6 × 109 | 3 × 109 | - | - |
Normal bond strength (Pa) | - | 1 × 104 | - | - |
Tangential bond strength (Pa) | - | 1 × 104 | - | - |
Bentonite Content (%) | Confining Pressure (kPa) | Maximum Deviational Stress (kPa) | Error | |
---|---|---|---|---|
Experimental Results | Simulated Results | |||
0 | 200 | 719.15 | 751.87 | 0.044 |
300 | 687.92 | 674.62 | 0.0198 | |
400 | 704.58 | 701.25 | 0.0047 | |
5 | 200 | 1102.6 | 1084.2 | 0.0169 |
300 | 1009.3 | 937.5 | 0.0766 | |
400 | 1020.2 | 1043.7 | 0.0220 | |
10 | 200 | 1403.3 | 1339.0 | 0.0478 |
300 | 1316.7 | 1072.3 | 0.226 | |
400 | 1329.2 | 1315.9 | 0.0106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Xu, D.; Lalit, B. Effect of Bentonite Content and Hydration Time on Mechanical Properties of Sand–Bentonite Mixture. Appl. Sci. 2021, 11, 12001. https://doi.org/10.3390/app112412001
Qin Y, Xu D, Lalit B. Effect of Bentonite Content and Hydration Time on Mechanical Properties of Sand–Bentonite Mixture. Applied Sciences. 2021; 11(24):12001. https://doi.org/10.3390/app112412001
Chicago/Turabian StyleQin, Yue, Dongsheng Xu, and Borana Lalit. 2021. "Effect of Bentonite Content and Hydration Time on Mechanical Properties of Sand–Bentonite Mixture" Applied Sciences 11, no. 24: 12001. https://doi.org/10.3390/app112412001
APA StyleQin, Y., Xu, D., & Lalit, B. (2021). Effect of Bentonite Content and Hydration Time on Mechanical Properties of Sand–Bentonite Mixture. Applied Sciences, 11(24), 12001. https://doi.org/10.3390/app112412001