Productivity Prediction of Fractured Horizontal Well in Shale Gas Reservoirs with Machine Learning Algorithms
Abstract
:1. Introduction
2. Model Description
2.1. Neural Network Description
2.2. Data Preparation and Preprocessing
2.3. Prediction Accuracy Evaluation
3. Results and Discussion
3.1. MLP Network
3.2. LSTM Network
3.3. Comparisons of the Different Networks
3.4. Relative Errors at an Early Production Time
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Curtis, J.B. Fractured shale-gas systems. AAPG Bull. 2002, 86, 1921–1938. [Google Scholar]
- Freeman, C.M.; Moridis, G.; Ilk, D.; Blasingame, T.A. A numerical study of performance for tight gas and shale gas reservoir systems. J. Petrol. Sci. Eng. 2013, 108, 22–39. [Google Scholar] [CrossRef]
- Wang, T.; Tian, S.; Li, G.; Sheng, M.; Ren, W.; Liu, Q.; Zhang, S. Molecular Simulation of CO2/CH4 Competitive Adsorption on Shale Kerogen for CO2 Sequestration and Enhanced Gas Recovery. J. Phys. Chem. C 2018, 122, 17009–17018. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, X.; Zhu, H.; Zhang, X.; Pan, R. Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method. J. Nat. Gas. Sci. Eng. 2015, 25, 180–188. [Google Scholar] [CrossRef]
- Tang, J.; Wu, K.; Li, Y.; Hu, X.; Liu, Q.; Ehlig-Economides, C. Numerical investigation of the interactions between hydraulic fracture and bedding planes with non-orthogonal approach angle. Eng. Fract. Mech. 2018, 200, 1–16. [Google Scholar] [CrossRef]
- Ren, W.; Lau, H.C. New Rate-Transient Analysis for Fractured Shale Gas Wells Using a Tri-linear Flow Model. J. Nat. Gas Sci. Eng. 2020, 80, 103368. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, J.; Li, W.; Leong, Y.K.; Elsworth, D.; Guo, J. Shale gas reservoir modeling and production evaluation considering complex gas transport mechanisms and dispersed distribution of kerogen. Pet. Sci. 2020, 18, 195–218. [Google Scholar] [CrossRef]
- Wang, T.; Tian, S.; Zhang, W.; Ren, W.; Li, G. Production Model of a Fractured Horizontal Well in Shale Gas Reservoirs. Energy Fuels 2021, 35, 493–500. [Google Scholar] [CrossRef]
- Shi, Y.; Song, X.; Song, G. Productivity prediction of a multilateral-well geothermal system based on a long short-term memory and multi-layer perceptron combinational neural network. Appl. Energy 2021, 282, 116046. [Google Scholar] [CrossRef]
- Sagheer, A.; Kotb, M. Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing 2019, 323, 203–213. [Google Scholar] [CrossRef]
- Shoeibi Omrani, P.; Dobrovolschi, I.; Belfroid, S.; Kronberger, P.; Munoz, E. Improving the accuracy of virtual flow metering and back-allocation through machine learning. In Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, United Arab Emirates, 12–15 November 2018; Society of Petroleum Engineers: Delft, The Netherlands, 2018. [Google Scholar]
- Chakra, N.C.; Song, K.-Y.; Gupta, M.M.; Saraf, D.N. An innovative neural forecast of cumulative oil production from a petroleum reservoir employing higher-order neural networks (HONNs). J. Petrol. Sci. Eng. 2013, 106, 18–33. [Google Scholar] [CrossRef]
- Sheremetov, L.; Cosultchi, A.; Martínez-Muñoz, J.; Gonzalez-Sánchez, A.; Jiménez-Aquino, M. Data-driven forecasting of naturally fractured reservoirs based on nonlinear autoregressive neural networks with exogenous input. J. Petrol. Sci. Eng. 2014, 123, 106–119. [Google Scholar] [CrossRef]
- Aizenberg, I.; Sheremetov, L.; Villa-Vargas, L.; Martinez-Muñoz, J. Multilayer neural network with multi-valued neurons in time series forecasting of oil production. Neurocomputing 2016, 175, 980–989. [Google Scholar] [CrossRef]
- Cao, Q.; Banerjee, R.; Gupta, S.; Li, J.; Zhou, W.; Jeyachandra, B. Data driven production forecasting using machine learning. In Proceedings of the SPE Argentina Exploration and Production of Unconventional Resources Symposium, Buenos Aires, Argentina, 1–3 June 2016; Society of Petroleum Engineers: Beijing, China, 2016. [Google Scholar]
- Sun, J.; Ma, X.; Kazi, M. Comparison of decline curve analysis DCA with recursive neural networks RNN for production forecast of multiple wells. In Proceedings of the SPE Western Regional Meeting, Garden Grove, CA, USA, 22–26 April 2018; Society of Petroleum Engineers: Richardson, TX, USA, 2018. [Google Scholar]
- Hampshire, J.B., II; Pearlmutter, B. Equivalence Proofs for Multi-Layer Perceptron Classifiers and the Bayesian Discriminant Function, Connectionist Models; Elsevier: Amsterdam, The Netherlands, 1991; pp. 159–172. [Google Scholar]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef] [Green Version]
- Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 17–19 June 2013; pp. 1310–1318. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. LSTM can solve hard long time lag problems. Adv. Neural Inf. Process. Syst. 1997, 9, 473–479. [Google Scholar]
- Zhu, Z.; Song, X.; Li, G.; Xu, Z.; Zhu, S.; Yao, X.; Jing, S. Prediction of the settling velocity of the rod-shaped proppant in vertical fracture using artificial neural network. J. Petrol. Sci. Eng. 2021, 200, 108158. [Google Scholar] [CrossRef]
- Wang, T.Y.; Tian, S.C.; Liu, Q.L.; Li, G.S.; Sheng, M.; Ren, W.X.; Zhang, P.P. Pore structure characterization and its effect on methane adsorption in shale kerogen. Pet. Sci. 2021, 18, 565–578. [Google Scholar] [CrossRef]
- Wang, T.; Tian, S.; Li, G.; Zhang, L.; Sheng, M.; Ren, W. Molecular simulation of gas adsorption in shale nanopores: A critical review. Renew. Sustain. Energy Rev. 2021, 149, 111391. [Google Scholar] [CrossRef]
- Tseng, F.-M.; Yu, H.-C.; Tzeng, G.-H. Combining neural network model with seasonal time series ARIMA model. Technol. Forecast. Soc. Chang. 2002, 69, 71–87. [Google Scholar] [CrossRef]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Zhang, X. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
Parameters | Value |
---|---|
Fracture cluster | 3, 5, 7, 9 |
Half-length of fracture (m) | 60, 80, 100, 120 |
Fracture conductivity (mD·m) | 100, 200, 300, 400 |
Permeability (nD) | 100, 200, 300, 400 |
Cluster | Half-Length of Fracture (m) | Fracture Conductivity (mD·m) | Permeability (nD) | Production Time (d) | Daily Production (m3/d) | |
---|---|---|---|---|---|---|
1 | 9 | 120 | 400 | 400 | 1 | 106,485.00 |
2 | 9 | 120 | 400 | 400 | 2 | 89,001.90 |
3 | 9 | 120 | 400 | 400 | 3 | 79,231.30 |
4 | 9 | 120 | 400 | 400 | 4 | 72,545.10 |
5 | 9 | 120 | 400 | 400 | 5 | 67,481.10 |
… | … | … | … | … | … | … |
255,996 | 3 | 60 | 100 | 100 | 996 | 289.90 |
255,997 | 3 | 60 | 100 | 100 | 997 | 289.75 |
255,998 | 3 | 60 | 100 | 100 | 998 | 289.60 |
255,999 | 3 | 60 | 100 | 100 | 999 | 289.43 |
256,000 | 3 | 60 | 100 | 100 | 1000 | 289.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Wang, Q.; Shi, J.; Zhang, W.; Ren, W.; Wang, H.; Tian, S. Productivity Prediction of Fractured Horizontal Well in Shale Gas Reservoirs with Machine Learning Algorithms. Appl. Sci. 2021, 11, 12064. https://doi.org/10.3390/app112412064
Wang T, Wang Q, Shi J, Zhang W, Ren W, Wang H, Tian S. Productivity Prediction of Fractured Horizontal Well in Shale Gas Reservoirs with Machine Learning Algorithms. Applied Sciences. 2021; 11(24):12064. https://doi.org/10.3390/app112412064
Chicago/Turabian StyleWang, Tianyu, Qisheng Wang, Jing Shi, Wenhong Zhang, Wenxi Ren, Haizhu Wang, and Shouceng Tian. 2021. "Productivity Prediction of Fractured Horizontal Well in Shale Gas Reservoirs with Machine Learning Algorithms" Applied Sciences 11, no. 24: 12064. https://doi.org/10.3390/app112412064
APA StyleWang, T., Wang, Q., Shi, J., Zhang, W., Ren, W., Wang, H., & Tian, S. (2021). Productivity Prediction of Fractured Horizontal Well in Shale Gas Reservoirs with Machine Learning Algorithms. Applied Sciences, 11(24), 12064. https://doi.org/10.3390/app112412064