Morphometric Analysis and Three-Dimensional Computed Tomography Reconstruction of Thai Distal Femur
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. CT Scans and 3D Reconstruction
2.3. Measurement of Morphometric Parameters
2.4. Statistical Analysis
3. Results
3.1. Intra-Rater and Inter-Rater Reliability Analyses
3.2. Measurement of Morphological Parameters in Thai Male and Female
3.3. Comparison of the Morphometric Parameters with Thai Studies
3.4. Comparison of the Morphometric Parameters with Other Nationalities
3.5. Correlation and Linear Regression Analysis of Morphometric Parameters
3.6. Application of Morphometric Data to Analyze the Knee Prostheses for Thais
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, D.-I.; Kwak, D.-S.; Han, S.-H. Sex determination using discriminant analysis of the medial and lateral condyles of the femur in Koreans. Forensic Sci. Int. 2013, 233, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.-J.; Kwak, D.-S.; Kim, I.-B. Morphometric Evaluation of Korean Femurs by Geometric Computation: Comparisons of the Sex and the Population. BioMed Res. Int. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahaisavariya, B.; Sitthiseripratip, K.; Tongdee, T.; Bohez, E.L.J.; Vander Sloten, J.; Oris, P. Morphological study of the proximal femur: A new method of geometrical assessment using 3-dimensional reverse engineering. Med. Eng. Phys. 2002, 24, 617–622. [Google Scholar] [CrossRef]
- Chantarapanich, N.; Rojanasthien, S.; Chernchujit, B.; Mahaisavariya, B.; Karunratanakul, K.; Chalermkarnnon, P.; Glunrawd, C.; Sitthiseripratip, K. 3D CAD/reverse engineering technique for assessment of Thai morphology: Proximal femur and acetabulum. J. Orthop. Sci. 2017, 22, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Urabe, K.; Mahoney, O.; Mabuchi, K.; Itoman, M. Morphologic Differences of the Distal Femur between Caucasian and Japanese Women. J. Orthop. Surg. 2008, 16, 312–315. [Google Scholar] [CrossRef]
- Cheng, F.; Ji, X.; Lai, Y.; Feng, J.; Zheng, W.; Sun, Y.; Fu, Y.; Li, Y. Three dimensional morphometry of the knee to design the total knee arthroplasty for Chinese population. Knee 2009, 16, 341–347. [Google Scholar] [CrossRef]
- Yue, B.; Varadarajan, K.M.; Ai, S.; Tang, T.; Rubash, H.E.; Li, G. Gender differences in the knees of Chinese population. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 80–88. [Google Scholar] [CrossRef]
- Chin, P.; Tey, T.; Ibrahim, M.; Chia, S.-L.; Yeo, S.; Lo, N. Intraoperative Morphometric Study of Gender Differences in Asian Femurs. J. Arthroplast. 2011, 26, 984–988. [Google Scholar] [CrossRef]
- Terzidis, I.; Totlis, T.; Papathanasiou, E.; Sideridis, A.; Vlasis, K.; Natsis, K. Gender and Side-to-Side Differences of Femoral Condyles Morphology: Osteometric Data from 360 Caucasian Dried Femori. Anat. Res. Int. 2012, 2012, 679658. [Google Scholar] [CrossRef] [Green Version]
- Zalawadia, A.; Parekh, D.; Patel, S. Morphometric study of lower end of dry femur in gujarat region and its clinical implication. Int. J. Anat. Res. 2017, 5, 4595–4599. [Google Scholar] [CrossRef] [Green Version]
- Loures, F.; Carrara, R.; Góes, R.; Albuquerque, R.; Barreto, J.; Kinder, A.; Gameiro, V.; Marchiori, E. Anthropometric study of the knee in patients with osteoarthritis: Intraoperative measurement versus magnetic resonance imaging. Radiol. Bras. 2017, 50, 170–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rooppakhun, S.; Chantarapanich, N.; Sitthiseripratip, K. Advanced medical imaging and reverse engineering technologies in craniometric study. In Forensic Medicine—From Old Problems to New Challenges; In Tech: Rijeka, Croatia, 2011; pp. 307–326. [Google Scholar]
- Pinskerova, V.; Nemec, K.; Landor, I. Gender differences in the morphology of the trochlea and the distal femur. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 2342–2349. [Google Scholar] [CrossRef] [PubMed]
- Cavaignac, E.; Ancelin, D.; Reina, N.; Telmon, N.; Chiron, P. Geometric morphometric analysis reveals ethnic group related differences in the distal femur. Rev. Chir. Orthop. Traumatol. 2016, 102, S181. [Google Scholar] [CrossRef]
- Fan, L.; Xu, T.; Li, X.; Zan, P.; Li, G. Morphologic features of the distal femur and tibia plateau in Southeastern Chinese population: A cross-sectional study. Medicine 2017, 96, e8524. [Google Scholar] [CrossRef]
- Bansal, V.; Mishra, A.; Verma, T.; Maini, D.; Karkhur, Y.; Maini, L. Anthropometric assessment of tibial resection surface morphology in total knee arthroplasty for tibial component design in Indian population. J. Arthrosc. Jt. Surg. 2018, 5, 24–28. [Google Scholar] [CrossRef]
- Rooppakhun, S.; Surasith, P.; Vatanapatimakul, N.; Kaewprom, Y.; Sitthiseripratip, K. Craniometric study of Thai skull based on three-dimensional computed tomography (CT) data. J. Med. Assoc. Thail. 2010, 93, 90–98. [Google Scholar]
- Magetsari, R.; Suyitno, D.; Dharmastiti, R.; Salim, U.; Hidayat, L.; Yudiman, T.; Lanodiyu, Z.; Dewo, P. Three Dimensional Morphometry of Distal Femur to Design Knee Prosthesis for Indonesian Population. Int. J. Morphol. 2015, 33, 1255–1260. [Google Scholar] [CrossRef] [Green Version]
- Hafez, M.A.; Sheikhedrees, S.M.; Saweeres, E.S.B. Anthropometry of Arabian Arthritic Knees: Comparison to Other Ethnic Groups and Implant Dimensions. J. Arthroplast. 2016, 31, 1109–1116. [Google Scholar] [CrossRef]
- Ma, Q.-L.; Lipman, J.D.; Cheng, C.-K.; Wang, X.-N.; Zhang, Y.-Y.; You, B. A Comparison between Chinese and Caucasian 3-Dimensional Bony Morphometry in Presimulated and Postsimulated Osteotomy for Total Knee Arthroplasty. J. Arthroplast. 2017, 32, 2878–2886. [Google Scholar] [CrossRef]
- Magarelli, N.; Milano, G.; Baudi, P.; Santagada, D.; Righi, P.; Spina, V.; Leone, A.; Amelia, R.; Fabbriciani, C.; Bonomo, L. Comparison between 2D and 3D computed tomography evaluation of glenoid bone defect in unilateral anterior gleno-humeral instability. La Radiol. Med. 2011, 117, 102–111. [Google Scholar] [CrossRef]
- Fuller, C.B.; Farnsworth, C.L.; Bomar, J.D.; Jeffords, M.E.; Murphy, J.S.; Edmonds, E.W.; Pennock, A.T.; Wenger, D.R.; Upasani, V.V. Femoral version: Comparison among advanced imaging methods. J. Orthop. Res. 2018, 36, 1536–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaichankul, C.; Tanavalee, A.; Itiravivong, P. Anthropometric measurements of knee joints in Thai population: Correlation to the sizing of current knee prostheses. Knee 2011, 18, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Wanitcharoenporn, W.; Chareancholvanich, K.; Pornrattanamaneewong, C. Correlation of intraoperative anthropometric measurement of resected Thai distal femurs between unisex and gender-specific implants. J. Med. Assoc. Thail. 2014, 97, 1308–1313. [Google Scholar]
- Koh, Y.-G.; Jung, K.-H.; Hong, H.-T.; Kim, K.-M.; Kang, K.-T. Optimal Design of Patient-Specific Total Knee Arthroplasty for Improvement in Wear Performance. J. Clin. Med. 2019, 8, 2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaviti, A. A Review of Use FEM Techniques in Modeling of Human Knee Joint. JBBBE 2016, 28, 14–25. [Google Scholar]
- Relf, H.I.; Barberio, C.G.; Espino, D.M. A Finite Element Model for Trigger Finger. Prosthesis 2020, 2, 168–184. [Google Scholar] [CrossRef]
- Paracchini, L.; Barbieri, C.; Redaelli, M.; di Croce, D.; Vincenzi, C.; Guarnieri, R. Finite Element Analysis of a New Dental Implant Design Optimized for the Desirable Stress Distribution in the Surrounding Bone Region. Prosthesis 2020, 2, 225–236. [Google Scholar] [CrossRef]
- Marutho, D.; Handaka, S.H.; Wijaya, E.; Muljono. The Determination of Cluster Number at k-Mean Using Elbow Method and Purity Evaluation on Headline News. In Proceedings of the 2018 International Seminar on Application for Technology of Information and Communication, Semarang, Indonesia, 21–22 September 2018; pp. 533–538. [Google Scholar]
- Shah, D.; Ghyar, R.; Ravi, B.; Shetty, V. 3D Morphological Study of the Indian Arthritic Knee: Comparison with Other Ethnic Groups and Conformity of Current TKA Implant. Open J. Rheumatol. Autoimmune Dis. 2013, 3, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Zou, D.; Deusinger, R.H.; Smith, K.; Koleini, M. Reliability and gender differences of internal skeletal dimensions using volumetric quantitative computed tomography. In Proceedings of the 2011 IEEE/ICME International Conference on Complex Medical Engineering, Harbin, China, 22–25 May 2011; pp. 148–153. [Google Scholar]
- Huang, A.-B.; Luo, X.; Song, C.-H.; Zhang, J.-Y.; Yang, Y.-Q.; Yu, J.-K. Comprehensive assessment of patellar morphology using computed tomography-based three-dimensional computer models. Knee 2015, 22, 475–480. [Google Scholar] [CrossRef]
- Mahfouz, M.; Abdel Fatah, E.E.; Bowers, L.S.; Scuderi, G. Three-dimensional morphology of the knee reveals ethnic differences. Clin. Orthop. Relat. Res. 2012, 470, 172–185. [Google Scholar] [CrossRef] [Green Version]
- Tangruthaiwanich, A. Factors Affecting the Orthopedic Surgeons Buying Decision of Prosthesis in Bangkok Metropolitan. Master’s Thesis, Chiang Mai University, Chiang Mai, Thailand, 2017. [Google Scholar]
- Tripathi, S.; Bhardwaj, A.; Poovammal, E. Approaches to Clustering in Customer Segmentation. Int. J. Eng. Technol. 2018, 7, 802–807. [Google Scholar] [CrossRef] [Green Version]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, F.M.; Math, K.; Scuderi, G.R.; Insall, J.N.; Poilvache, P.L. Anatomy of the epicondyles of the distal femur: MRI analysis of normal knees. J. Arthroplast. 2000, 15, 354–359. [Google Scholar] [CrossRef]
- Yue, B.; Varadarajan, K.; Ai, S.; Tang, T.; Rubash, H.; Li, G. Differences of Knee Anthropometry between Chinese and White Men and Women. J. Arthroplast. 2010, 26, 124–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, G.; Liu, D.; Malhotra, R.; Zhou, Y.X.; Akagi, M.; Kim, T.K. Availability of Additional Mediolateral Implant Option During Total Knee Arthroplasty Improves Femoral Component Fit Across Ethnicities: Results of a Multicenter Study. JB JS Open Access 2017, 2, e0014. [Google Scholar] [CrossRef]
Abbreviation | Measurement | Definition |
---|---|---|
TEA | Transepicondylar axis length | A distance between the most prominent point of lateral and medial epicondyle (LE–ME) |
ML | Mediolateral length | A distance between the most prominent point of lateral and medial epicondyle (LLC–MLC) |
AP | Anteroposterior width | A distance between the most anterior cortex point (AC) and a line connecting LPC and MPC point |
MAP | Medial anteroposterior width | A distance between the most anterior and posterior point of medial condyle (MAC–MPC) |
LAP | Lateral anteroposterior width | A distance between the most anterior and posterior point of lateral condyle (LAC–LPC) |
MCW | Medial condyle width | A width from most medial point to lateral point of medial condyle (MMC–MLC) |
LCW | Lateral condyle width | A width from most medial point to lateral point of lateral condyle (LMC–LLC) |
WIN | Intercondylar notch width | A width of the intercondylar notch (LMC–MMC) |
DIN | Intercondylar notch depth | A distance from the line connecting LPC–MPC point to the apex of the intercondylar notch |
MPC | Medial posterior condyle height | A distance between the most superior and inferior point of medial condyle (HMC1–HMC2) |
LPC | Lateral posterior condyle height | A distance between the most superior and inferior point of lateral condyle (HLC1–HLC2) |
ML/AP | Femoral aspect ratio | A femoral aspect ratio on the middle condyle |
ML/LAP | Lateral femoral aspect ratio | A femoral aspect ratio on the lateral condyle |
ML/MAP | Medial femoral aspect ratio | A femoral aspect ratio on the medial condyle |
Parameters | Intra-Rater | Inter-Rater |
---|---|---|
TEA | 0.98 | 0.98 |
ML | 0.90 | 0.87 |
AP | 0.97 | 0.96 |
MAP | 0.96 | 0.94 |
LAP | 0.96 | 0.96 |
MCW | 0.92 | 0.92 |
LCW | 0.85 | 0.85 |
WIN | 0.97 | 0.84 |
DIN | 0.96 | 0.91 |
MPC | 0.95 | 0.96 |
LPC | 0.89 | 0.91 |
Parameters | Total (n = 360) | Male (n = 180) | Female (n = 180) | p-Value |
---|---|---|---|---|
TEA | 79.53 ± 6.54 | 84.90 ± 4.04 | 74.16 ± 3.38 | <0.001 |
ML | 71.00 ± 5.30 | 75.10 ± 3.24 | 66.89 ± 3.46 | <0.001 |
AP | 56.50 ± 4.67 | 59.89 ± 3.18 | 53.12 ± 3.25 | <0.001 |
MAP | 60.57± 4.83 | 64.12 ± 3.08 | 57.03 ± 3.46 | <0.001 |
LAP | 63.10 ± 4.48 | 66.36 ± 3.29 | 59.85 ± 2.86 | <0.001 |
MCW | 25.58 ± 2.56 | 27.41 ± 2.02 | 23.75 ± 1.52 | <0.001 |
LCW | 24.62 ± 2.78 | 26.87 ± 1.85 | 22.37 ± 1.36 | <0.001 |
WIN | 20.06 ± 2.72 | 21.45 ± 2.55 | 18.67 ± 2.11 | <0.001 |
DIN | 27.92 ± 6.48 | 33.14 ± 3.69 | 22.71 ± 4.00 | <0.001 |
MPC | 38.66 ± 3.26 | 40.61 ± 2.81 | 36.70 ± 2.43 | <0.001 |
LPC | 37.10 ± 2.96 | 39.07 ± 2.23 | 35.13 ± 2.18 | <0.001 |
ML/AP | 1.26 ± 0.07 | 1.26 ± 0.06 | 1.26 ± 0.07 | 0.398 |
ML/MAP | 1.18 ± 0.06 | 1.18 ± 0.05 | 1.18 ± 0.07 | 0.422 |
ML/LAP | 1.13 ± 0.06 | 1.13 ± 0.05 | 1.12 ± 0.06 | 0.016 |
Present Study | Thai [23] | Thai [24] | |
---|---|---|---|
Parameters | Male (n = 180) | Male (n = 81) | Male (n = 30) |
Female (n = 180) | Female (n = 119) | Female (n = 170) | |
TEA | 84.90 ± 4.04 (M) 74.16 ± 3.38 (F) | - - | - - |
ML | 75.10 ± 3.24 (M) 66.89 ± 3.46 (F) | 70.15 ± 3.87 (M) * 59.91 ± 3.75 (F) * | 72.10 ± 4.40 (M) * 64.70 ± 3.60 (F) * |
MAP | 64.12 ± 3.08 (M) 57.03 ± 3.46 (F) | - - | 59.20 ± 3.30 (M) * 53.60 ± 2.60 (F) * |
LAP | 66.36 ± 3.29 (M) 59.85 ± 2.86 (F) | - - | 56.50 ± 3.20 (M) * 51.60 ± 2.40 (F) * |
AP | 59.89 ± 3.18 (M) | 48.55 ± 3.73 (M) * | - |
53.12 ± 3.25 (F) | 43.32 ± 3.69 (F) * | - | |
MCW | 27.41 ± 2.02 (M) 23.75 ± 1.52 (F) | - - | - - |
LCW | 26.87 ± 1.85 (M) 22.37 ± 1.36 (F) | - - | - - |
WIN | 21.45 ± 2.55 (M) 18.67 ± 2.11 (F) | - - | - - |
DIN | 33.14 ± 3.69 (M) 22.71 ± 4.00 (F) | - - | - - |
MPC | 40.61 ± 2.81 (M) 36.70 ± 2.43 (F) | - - | - - |
LPC | 39.07 ± 2.23 (M) 35.13 ± 2.18 (F) | - - | - - |
ML/AP | 1.26 ± 0.06 (M) 1.26 ± 0.07 (F) | 1.45 ± 0.11 (M) * 1.39 ± 0.12 (F) * | - - |
ML/MAP | 1.18 ± 0.05 (M) 1.18 ± 0.07 (F) | - - | 1.22 ± 0.08 (M) * 1.21 ± 0.06 (F) * |
ML/LAP | 1.13 ± 0.05 (M) 1.12 ± 0.06 (F) | - - | 1.27 ± 0.07 (M) * 1.26 ± 0.07 (F) * |
Present Study | Korean [2] | Caucasians [33] | |
---|---|---|---|
Parameters | Male (n = 180) | Male (n = 88) | Male (n = 500) |
Female (n = 180) | Female (n = 114) | Female (n = 340) | |
TEA | 84.90 ± 4.04 (M) 74.16 ± 3.38 (F) | - - | - - |
ML | 75.10 ± 3.24 (M) 66.89 ± 3.46 (F) | 75.40 ± 2.14 (M) 66.48 ± 2.41 (F) | 85.90 ± 4.70 (M) * 75.80 ± 3.30 (F) * |
MAP | 64.12 ± 3.08 (M) 57.03 ± 3.46 (F) | 61.22 ± 3.06 (M) * 55.25 ± 3.02 (F) * | 65.70 ± 3.70 (M) * 59.40 ± 3.30 (F) * |
LAP | 66.36 ± 3.29 (M) 59.85 ± 2.86 (F) | 64.63 ± 3.65 (M) * 58.39 ± 2.76 (F) * | 67.80 ± 4.10 (M) * 61.40 ± 3.20 (F) * |
AP | 59.89 ± 3.18 (M) | - | 61.20 ± 2.90 (M) * |
53.12 ± 3.25 (F) | - | 55.90 ± 3.30 (F) * | |
MCW | 27.41 ± 2.02 (M) 23.75 ± 1.52 (F) | 25.78 ± 1.85 (M) * 23.46 ± 2.39 (F) * | - - |
LCW | 26.87 ± 1.85 (M) 22.37 ± 1.36 (F) | 27.96 ± 1.91 (M) * 24.05 ± 2.00 (F) * | - - |
WIN | 21.45 ± 2.55 (M) 18.67 ± 2.11 (F) | 21.66 ± 2.66 (M) 18.97 ± 2.75 (F) * | - - |
DIN | 33.14 ± 3.69 (M) 22.71 ± 4.00 (F) | 30.05 ± 2.05 (M) * 27.16 ± 1.85 (F) * | - - |
MPC | 40.61 ± 2.81 (M) 36.70 ± 2.43 (F) | - - | - - |
LPC | 39.07 ± 2.23 (M) 35.13 ± 2.18 (F) | - - | - - |
ML/AP | 1.26 ± 0.06 (M) 1.26 ± 0.07 (F) | - - | 1.41 ± 0.06 (M) * 1.36 ± 0.06 (F) * |
ML/MAP | 1.18 ± 0.05 (M) 1.18 ± 0.07 (F) | - - | - - |
ML/LAP | 1.13 ± 0.05 (M) 1.12 ± 0.06 (F) | - - | - - |
Parameters | Linear Regression Equation | Correlation Coefficient (r) |
---|---|---|
AP vs. MAP | AP = −3.53 + 0.99 MAP | 0.958 |
ML vs. TEA | ML = 15.77 + 0.64 TEA | 0.798 |
MAP vs. LAP | MAP = 16.47 + 0.72 LAP | 0.766 |
AP vs. LAP | AP = 11.11 + 0.74 LAP | 0.759 |
ML/MAP vs. ML/AP | ML/MAP = 0.35 + 0.66 ML/AP | 0.730 |
MAP vs. TEA | MAP = 17.82 + 0.54 TEA | 0.716 |
LAP vs. TEA | LAP = 17.74 + 0.58 TEA | 0.709 |
ML/LAP vs. ML/AP | ML/LAP = 0.37 + 0.60 ML/AP | 0.705 |
LPC vs. MPC | LPC = 16.39 + 0.56 MPC | 0.702 |
AP vs. TEA | AP = 13.68 + 0.54 TEA | 0.692 |
AP vs. ML/AP | AP = 102.10 − 33.55 ML/AP | 0.636 |
LAP vs. ML/LAP | LAP = 109.00 − 37.61 ML/LAP | 0.588 |
ML vs. MCW | ML = 44.29 + 0.94MCW | 0.586 |
MAP vs. ML/AP | MAP = 101.60 − 29.84 ML/AP | 0.584 |
MCW vs. TEA | TEA = 53.30 + 1.15 MCW | 0.575 |
Parameters | Linear Regression Equation | Correlation Coefficient (r) |
---|---|---|
AP vs. MAP | AP = 3.24 + 0.87 MAP | 0.931 |
LPC vs. MPC | LPC = 8.68 + 0.72 MPC | 0.802 |
LAP vs. TEA | LAP = 10.96 + 0.66 TEA | 0.778 |
LPC vs. LAP | LPC = 2.67 + 0.54 LAP | 0.711 |
MPC vs. LAP | MPC = 2.18 + 0.58 LAP | 0.680 |
ML vs. TEA | ML = 16.48 + 0.68 TEA | 0.664 |
TEA vs. MPC | TEA = 40.42 + 0.92 MPC | 0.661 |
LPC vs. TEA | LPC = 4.17 + 0.42 TEA | 0.646 |
AP vs. ML/AP | AP = 88.06 − 27.64 ML/AP | 0.645 |
LAP vs. AP | LAP = 30.40 + 0.55 AP | 0.630 |
MCW vs. LAP | MCW = 4.00 + 0.33 LAP | 0.621 |
ML/LAP vs. ML/AP | ML/LAP = 0.50 + 0.49 ML/AP | 0.619 |
LPC vs. MCW | LPC = 14.96 + 0.85 MCW | 0.592 |
MAP vs. LAP | MAP = 14.84 + 0.70 LAP | 0.583 |
ML vs. ML/LAP | ML = 29.52 + 33.40 ML/LAP | 0.576 |
Size | AP (mm) | ML (mm) | AP (mm) | ML (mm) | AP (mm) | ML (mm) |
---|---|---|---|---|---|---|
1 | 53 | 63 | 52 | 64 | 52 | 63 |
2 | 58 | 68 | 56 | 62 | 54 | 67 |
3 | 62 | 72 | 58 | 70 | 56 | 72 |
4 | 62 | 76 | 60 | 67 | 58 | 72 |
5 | 67 | 75 | 62 | 74 | 60 | 67 |
6 | 67 | 79 | 64 | 72 | 63 | 72 |
7 | - | - | 66 | 78 | 63 | 77 |
8 | - | - | - | - | 67 | 78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phombut, C.; Rooppakhun, S.; Sindhupakorn, B. Morphometric Analysis and Three-Dimensional Computed Tomography Reconstruction of Thai Distal Femur. Appl. Sci. 2021, 11, 1052. https://doi.org/10.3390/app11031052
Phombut C, Rooppakhun S, Sindhupakorn B. Morphometric Analysis and Three-Dimensional Computed Tomography Reconstruction of Thai Distal Femur. Applied Sciences. 2021; 11(3):1052. https://doi.org/10.3390/app11031052
Chicago/Turabian StylePhombut, Chotchuang, Supakit Rooppakhun, and Bura Sindhupakorn. 2021. "Morphometric Analysis and Three-Dimensional Computed Tomography Reconstruction of Thai Distal Femur" Applied Sciences 11, no. 3: 1052. https://doi.org/10.3390/app11031052
APA StylePhombut, C., Rooppakhun, S., & Sindhupakorn, B. (2021). Morphometric Analysis and Three-Dimensional Computed Tomography Reconstruction of Thai Distal Femur. Applied Sciences, 11(3), 1052. https://doi.org/10.3390/app11031052