Lineal Energy of Proton in Silicon by a Microdosimetry Simulation
Abstract
:1. Introduction
2. Simulation Setup
3. Results and Discussions
3.1. Effect of SV Thickness on y Distribution
3.2. Lineal Energy Contribution from Various Secondary Species
3.3. Effect of Various Physics Models on Secondary Yields
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Garoli, D.; De Marcos, L.V.R.; Larruquert, J.I.; Corso, A.J.; Zaccaria, R.P.; Pelizzo, M.G. Mirrors for Space Telescopes: Degradation Issues. Appl. Sci. 2020, 10, 7538. [Google Scholar] [CrossRef]
- Insoo, J. Effects of secondary particles on the total dose and the displacement damage in space proton environments. IEEE Trans. Nucl. Sci. 2001, 48, 162–175. [Google Scholar] [CrossRef] [Green Version]
- Tan, F.; Huang, R.; An, X.; Wu, W.; Feng, H.; Huang, L.; Fan, J.; Zhang, X.; Wang, Y. Total ionizing dose (TID) effect and single event effect (SEE) in quasi-SOI nMOSFETs. Semicond. Sci. Technol. 2013, 29, 015010. [Google Scholar] [CrossRef]
- Schrimpf, R.D.; Warren, K.M.; Weller, R.A.; Reed, R.A.; Massengill, L.W.; Alles, M.L.; Fleetwood, D.M.; Zhou, X.J.; Tsetseris, L.; Pantelides, S.T. Reliability and radiation effects in IC technologies. IEEE Int. Reliab. Phys. Symp. 2008, 97–106. [Google Scholar] [CrossRef]
- Shaneyfelt, M.R.; Schwank, J.R.; Dodd, P.E.; Felix, J.A. Total Ionizing Dose and Single Event Effects Hardness Assurance Qualification Issues for Microelectronics. IEEE Trans. Nucl. Sci. 2008, 55, 1926–1946. [Google Scholar] [CrossRef]
- International Commission on Radiation Units and Measurements. Linear Energy Transfer, in Report 16; International Commission on Radiation Units and Measurements: Stockholm, Sweden, 2016; p. NP. [Google Scholar]
- O’Neill, P.; Badhwar, G.; Culpepper, W. Risk assessment for heavy ions of parts tested with protons. IEEE Trans. Nucl. Sci. 1997, 44, 2311–2314. [Google Scholar] [CrossRef] [Green Version]
- Hiemstra, D.; Blackmore, E. Let spectra of proton energy levels from 50 to 500 mev and their effectiveness for single event effects characterization of microelectronics. IEEE Trans. Nucl. Sci. 2003, 50, 2245–2250. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.; Biersack, J. SRIM—The stopping and range of ions in matter (2010). Beam Interact. Mater. Atoms 2010, 268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- Biersack, J.P.; Ziegler, J.F. The Stopping and Range of Ions in Solids. In Ion Implantation Techniques; Springer Nature: London, UK, 1982; pp. 122–156. [Google Scholar]
- Dodd, P.; Shaneyfelt, M.; Felix, J.; Schwank, J. Production and propagation of single-event transients in high-speed digital logic ICs. IEEE Trans. Nucl. Sci. 2004, 51, 3278–3284. [Google Scholar] [CrossRef]
- JEDEC Solid State Technology Association. Test. Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy Ion. Irradiation, in JESD57A; JEDEC Solid State Technology Association: Arlington, VA, USA, 2003. [Google Scholar]
- Pickel, J.C. Single-event effects rate prediction. IEEE Trans. Nucl. Sci. 1996, 43, 483–495. [Google Scholar] [CrossRef]
- Warren, K.M.; Weller, R.A.; Sierawski, B.D.; Reed, R.A.; Mendenhall, M.H.; Schrimpf, R.D.; Massengill, L.W.; Porter, M.E.; Wilkinson, J.D.; Label, K.A.; et al. Application of RADSAFE to Model the Single Event Upset Response of a 0.25 μm CMOS SRAM. IEEE Trans. Nucl. Sci. 2007, 54, 898–903. [Google Scholar] [CrossRef]
- Warren, K.M.; Sierawski, B.D.; Reed, R.A.; Weller, R.A.; Carmichael, C.; Lesea, A.; Mendenhall, M.H.; Dodd, P.E.; Schrimpf, R.D.; Massengill, L.W.; et al. Monte-Carlo Based On-Orbit Single Event Upset Rate Prediction for a Radiation Hardened by Design Latch. IEEE Trans. Nucl. Sci. 2007, 54, 2419–2425. [Google Scholar] [CrossRef]
- Bernal, M.A.; Bordage, M.-C.; Brown, J.; Davidkova, M.; Delage, E.; El Bitar, Z.; Enger, S.; Francis, Z.; Guatelli, S.; Ivanchenko, V.N.; et al. Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Phys. Medica 2015, 31, 861–874. [Google Scholar] [CrossRef] [PubMed]
- Incerti, S.S.; Baldacchino, G.; A Bernal, M.; Capra, R.; Champion, C.; Francis, Z.; Guèye, P.; Mantero, A.; Mascialino, B.; Moretto, P.; et al. THE GEANT4-DNA PROJECT. Int. J. Model. Simul. Sci. Comput. 2010, 1, 157–178. [Google Scholar] [CrossRef]
- Incerti, S.; Ivanchenko, A.; Karamitros, M.; Mantero, A.; Moretto, P.; Tran, H.N.; Mascialino, B.; Champion, C.; Ivanchenko, V.N.; Bernal, M.A.; et al. Comparison ofGEANT4very low energy cross section models with experimental data in water. Med. Phys. 2010, 37, 4692–4708. [Google Scholar] [CrossRef]
- Incerti, S.; Kyriakou, I.; Bernal, M.A.; Bordage, M.-C.; Francis, Z.; Guatelli, S.; Ivanchenko, V.; Karamitros, M.; Lampe, N.; Lee, S.B.; et al. Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project. Med. Phys. 2018, 45, e722–e739. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, R.B. A microdosimetric-kinetic theory of the dependence of the RBE for cell death on LET. Med. Phys. 1998, 25, 1157–1170. [Google Scholar] [CrossRef]
- Chiang, Y.; Tan, C.M.; Chao, T.-C.; Lee, C.-C.; Tung, C.-J. Investigate the Equivalence of Neutrons and Protons in Single Event Effects Testing: A Geant4 Study. Appl. Sci. 2020, 10, 3234. [Google Scholar] [CrossRef]
- Dennis, J.A. Book review Microdosimetry. ICRU Report No. 36. pp. 118, 1983. (International Commission on Radiation Units and Measurements, Bethesda, Md.) $18.00. Br. J. Radiol. 1985, 58, 250. [Google Scholar] [CrossRef]
- Rossi, H.; Failla, G. Neutrons: Dosimetry. Med. Phys. 1950, 2, 603–607. [Google Scholar]
- Rossi, H.H. Specification of Radiation Quality. Radiat. Res. 1959, 10, 522. [Google Scholar] [CrossRef]
- Conte, V.; Colautti, P.; Grosswendt, B.; Moro, D.; De Nardo, L. Track structure of light ions: Experiments and simulations. New J. Phys. 2012, 14. [Google Scholar] [CrossRef]
- Valentín, A.; Raine, M.; Sauvestre, J.-E.; Gaillardin, M.; Paillet, P. Geant4 physics processes for microdosimetry simulation: Very low energy electromagnetic models for electrons in silicon. Beam Interact. Mater. Atoms 2012, 288, 66–73. [Google Scholar] [CrossRef]
- Ying, C.K.; Bolst, D.; Tran, L.T.; Guatelli, S.; Rosenfeld, A.B.; A Kamil, W. Contributions of secondary fragmentation by carbon ion beams in water phantom: Monte Carlo simulation. J. Physics Conf. Ser. 2017, 851, 012033. [Google Scholar] [CrossRef] [Green Version]
- Foley, K.; Seifert, N.; Velamala, J.B.; Bennett, W.G.; Gupta, S.; Gupta, S. IRT: A modeling system for single event upset analysis that captures charge sharing effects. In Proceedings of the 2014 IEEE International Reliability Physics Symposium, Waikoloa, HI, USA, 1–5 June 2014; pp. 5F.1.1–5F.1.9. [Google Scholar]
- Reed, R.A.; Weller, R.A.; Mendenhall, M.H.; Fleetwood, D.M.; Warren, K.M.; Sierawski, B.D.; King, M.P.; Schrimpf, R.D.; Auden, E.C. Physical Processes and Applications of the Monte Carlo Radiative Energy Deposition (MRED) Code. IEEE Trans. Nucl. Sci. 2015, 62, 1441–1461. [Google Scholar] [CrossRef]
- Geant4-Collaboration. Book for Application Developers, Rev 3.1 ed; CERN: Geneva, Switzerland, 2019; p. 433. [Google Scholar]
- Bertini, H.W. Intranuclear-Cascade Calculation of the Secondary Nucleon Spectra from Nucleon-Nucleus Interactions in the Energy Range 340 to 2900 MeV and Comparisons with Experiment. Phys. Rev. 1969, 188, 1711–1730. [Google Scholar] [CrossRef]
- Folger, G.; Ivanchenko, V.N.; Wellisch, J.P. The Binary Cascade. Eur. Phys. J. A 2004, 21, 407–417. [Google Scholar] [CrossRef]
- Wright, D.H.; Koi, T.; Folger, G.; Ivanchenko, V.; Kossov, M.; Starkov, N.; Heikkinen, A.; Wellisch, H. Low and High Energy Modeling in Geant4. In Proceedings of the Fourth Huntsville Gamma-Ray Burst Symposium; AIP Publishing: Melville, NY, USA, 2007; Volume 896, pp. 11–20. [Google Scholar]
- Wright, D.H.; Kelsey, M.H. The Geant4 Bertini Cascade. Nuclear Instruments and Methods. Accel. Spectrometers Detect. Assoc. Equip. 2015, 804, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Koning, A.; Rochman, D. Modern Nuclear Data Evaluation with the TALYS Code System. Nucl. Data Sheets 2012, 113, 2841–2934. [Google Scholar] [CrossRef]
- Otuka, N.; Dupont, E.; Semkova, V.; Pritychenko, B.; Blokhin, A.; Aikawa, M.; Babykina, S.; Bossant, M.; Chen, G.; Dunaeva, S.; et al. Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration Between Nuclear Reaction Data Centres (NRDC). Nucl. Data Sheets 2014, 120, 272–276. [Google Scholar] [CrossRef] [Green Version]
- Agency, N.E. Joint Evaluated Fission and Fusion (JEFF) Nuclear Data Library. 6 March 2019. Available online: https://www.oecd-nea.org/dbdata/jeff/ (accessed on 23 July 2019).
- Horiwitz, Y.S.; Dubi, A. A proposed modification of Burlin’s general cavity theory for photons. Physics Med. Biol. 1982, 27, 867–870. [Google Scholar] [CrossRef]
- Inguimbert, C.; Duzellier, S. SEU rate calculation with GEANT4 (comparison with CREME 86). IEEE Trans. Nucl. Sci. 2004, 51, 2805–2810. [Google Scholar] [CrossRef]
- Schwank, J.; Shaneyfelt, M.; Baggio, J.; Dodd, P.; Felix, J.; Ferlet-Cavrois, V.; Paillet, P.; Lambert, D.; Sexton, F.; Hash, G.; et al. Effects of particle energy on proton-induced single-event latchup. IEEE Trans. Nucl. Sci. 2005, 52, 2622–2629. [Google Scholar] [CrossRef]
- Raine, M.; Jay, A.; Richard, N.; Goiffon, V.; Girard, S.; Gaillardin, M.; Paillet, P. Simulation of Single Particle Displacement Damage in Silicon—Part I: Global Approach and Primary Interaction Simulation. IEEE Trans. Nucl. Sci. 2016, 64, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Jay, A.; Raine, M.; Richard, N.; Mousseau, N.; Goiffon, V.; Hemeryck, A.; Magnan, P. Simulation of Single Particle Displacement Damage in Silicon–Part II: Generation and Long-Time Relaxation of Damage Structure. IEEE Trans. Nucl. Sci. 2017, 64, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Jay, A.; Hemeryck, A.; Richard, N.; Martin-Samos, L.; Raine, M.; Le Roch, A.; Mousseau, N.; Goiffon, V.; Paillet, P.; Gaillardin, M.; et al. Simulation of Single-Particle Displacement Damage in Silicon—Part III: First Principle Characterization of Defect Properties. IEEE Trans. Nucl. Sci. 2018, 65, 724–731. [Google Scholar] [CrossRef] [Green Version]
- McNulty, P.J.; Farrell, G.E.; Tucker, W.P. Proton-Induced Nuclear Reactions in Silicon. IEEE Trans. Nucl. Sci. 1981, 28, 4007–4012. [Google Scholar] [CrossRef]
- Bagatin, M.; Gerardin, S.; Paccagnella, A.; Visconti, A.; Virtanen, A.; Kettunen, H.; Costantino, A.; Ferlet-Cavrois, V.; Zadeh, A. Single Event Upsets Induced by Direct Ionization from Low-Energy Protons in Floating Gate Cells. IEEE Trans. Nucl. Sci. 2016, 64, 464–470. [Google Scholar] [CrossRef] [Green Version]
Z # | Mean Energy (MeV) | LET (LET124) * (MeV-cm2/mg) | LET (SRIM-2013) ** (MeV-cm2/mg) |
---|---|---|---|
2 | 5.32 | 0.5949 | 0.588 |
3 | 2.83 | 1.878 | 2.134 |
4 | 3.00 | 3.003 | 3.138 |
5 | 1.93 | 4.292 | 4.197 |
6 | 1.53 | 5.118 | 4.853 |
7 | 2.84 | 6.41 | 6.006 |
8 | 3.66 | 7.416 | 7.126 |
9 | 3.85 | 8.381 | 8.162 |
10 | 4.60 | 9.358 | 8.172 |
11 | 3.55 | 9.69 | 8.544 |
12 | 2.76 | 9.684 | 8.186 |
13 | 1.98 | 8.616 | 6.748 |
14 | 1.20 | 6.719 | 5.973 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiang, Y.; Tan, C.M.; Tung, C.-J.; Lee, C.-C.; Chao, T.-C. Lineal Energy of Proton in Silicon by a Microdosimetry Simulation. Appl. Sci. 2021, 11, 1113. https://doi.org/10.3390/app11031113
Chiang Y, Tan CM, Tung C-J, Lee C-C, Chao T-C. Lineal Energy of Proton in Silicon by a Microdosimetry Simulation. Applied Sciences. 2021; 11(3):1113. https://doi.org/10.3390/app11031113
Chicago/Turabian StyleChiang, Yueh, Cher Ming Tan, Chuan-Jong Tung, Chung-Chi Lee, and Tsi-Chian Chao. 2021. "Lineal Energy of Proton in Silicon by a Microdosimetry Simulation" Applied Sciences 11, no. 3: 1113. https://doi.org/10.3390/app11031113
APA StyleChiang, Y., Tan, C. M., Tung, C. -J., Lee, C. -C., & Chao, T. -C. (2021). Lineal Energy of Proton in Silicon by a Microdosimetry Simulation. Applied Sciences, 11(3), 1113. https://doi.org/10.3390/app11031113