Viewport Rendering Algorithm with a Curved Surface for a Wide FOV in 360° Images
Abstract
:1. Introduction
2. Conventional Methods to Render the Viewport
2.1. Basic Procedure to Render the Viewport Picture
2.2. Perspective Projection
2.3. Stereographic Projection
3. Limitation of the Conventional Methods
3.1. Distortions in Conventional Methods
3.2. Analysis of the Distortion Resulting from Conventional Methods
4. Algorithm Proposed to Render the Viewport
4.1. Curved UV Surface
4.2. Adjusted Sampling Intervals
5. Simulation Results
5.1. Quantitative Evaluation
5.2. Qualitative Evaluation
5.3. Perceptual Evaluation
5.4. Complexity Comparision
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bauermann, I.; Mielke, M.; Steinbach, E.H. 264 based coding of omnidirectional video. In Proceedings of the International Conference on Computer Vision and Graphics, Warsaw, Poland, 22–24 September 2004; Volume 32. [Google Scholar]
- Kuzyakov, E.; Pio, D. Next-Generation Video Encoding Techniques for 360 Video and vr. Blogpost, January 2016. Available online: https://code.facebook.com/posts/1126354007399553 (accessed on 18 December 2020).
- Hosseini, M.; Swaminathan, V. Adaptive 360 VR video streaming: Divide and conquer. In Proceedings of the 2016 IEEE International Symposium on Multimedia (ISM), San Jose, CA, USA, 11–13 December 2016; pp. 107–110. [Google Scholar]
- Smus, B. Three Approaches to VR Lens Distortion. 2016. Available online: http://smus.com/vr-lens-distortion/ (accessed on 18 December 2020).
- Champel, M.-L.; Koenen, R.; Lafruit, G.; Budagavi, M. Draft 1.0 of ISO/IEC 23090-1: Technical Report on Architectures for Immersive Media, Document N17741, ISO/IEC JTC1/SC29/WG11. In Proceedings of the 123rd Meeting, Ljubljana, Slovenia, 16–20 July 2018. [Google Scholar]
- Bross, B.; Chen, J.; Liu, S. Versatile Video Coding (Draft 6). In Proceedings of the 15th Meeting Joint Video Exploration Team (JVET), Document JVET-O2001, Gothenburg, Sweden, 12 July 2019. [Google Scholar]
- Ye, Y.; Boyce, J. Algorithm descriptions of projection format conversion and video quality metrics in 360Lib Version 8. In Proceedings of the 12th Meeting Joint Video Exploration Team (JVET), Document JVET-L1004, Macau, China, 3–12 October 2018. [Google Scholar]
- Szeliski, R. Image Alignment and Stitching: A Tutorial; Foundations and Trends® in Computer Graphics and Vision, Vol.2: No.1; Now Publishers Inc.: Hanover, MA, USA, 2007; pp. 1–104. [Google Scholar] [CrossRef]
- Zaragoza, J.; Chin, T.; Tran, Q.; Brown, M.S.; Suter, D. As-Projective-As-Possible Image Stitching with Moving DLT. In Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence, Portland, OR, USA, 23–28 June 2013; Volume 36, no. 7. pp. 1285–1298. [Google Scholar]
- Li, J.; Wang, Z.; Lai, S.; Zhai, Y.; Zhang, M. Parallax-Tolerant Image Stitching Based on Robust Elastic Warping. IEEE Trans. Multimed. 2018, 20, 1672–1687. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, Y.; Wang, H.; Li, B.; Hu, H. A Novel Projective-Consistent Plane Based Image Stitching Method. IEEE Trans. Multimed. 2019, 21, 2561–2575. [Google Scholar] [CrossRef]
- Triggs, B.; McLauchlan, P.F.; Hartley, R.I.; Fitzgibbon, A.W. Bundle adjustment a modern synthesis. In Vision Algorithms: Theory and Practice; Springer: New York, NY, USA, 2000; pp. 298–372. [Google Scholar]
- Lourakis, M.I.; Argyros, A.A. SBA: A software package for generic sparse bundle adjustment. ACM Trans. Math. Softw. 2009, 36, 1–30. [Google Scholar] [CrossRef]
- Burt, P.; Adelson, E.H. A Multiresolution Spline with Application to Image Mosaics. ACM Trans. Graph. 1983, 2, 217–236. [Google Scholar] [CrossRef]
- Agarwala, A. Efficient gradient-domain compositing using quadtrees. ACM Trans. Graph. 2007, 26, 94. [Google Scholar] [CrossRef]
- Greene, N. Environment Mapping and Other Applications of World Projections. IEEE Comput. Graph. Appl. 1986, 6, 21–29. [Google Scholar] [CrossRef]
- Snyder, J.P. Flattening the Earth: Two Thousand Years of Map Projections; Univ. Chicago Press: Chicago, IL, USA, 1993; pp. 5–8. [Google Scholar]
- Hanhart, P.; Xiu, X.; He, Y.; Ye, Y. 360° Video Coding Based on Projection Format Adaptation and Spherical Neighboring Relationship. IEEE J. Emerg. Sel. Top. Circuits Syst. 2019, 9, 71–83. [Google Scholar] [CrossRef]
- Lin, J.L.; Lee, Y.H.; Shih, C.H.; Lin, S.Y.; Lin, H.C.; Chang, S.K.; Wang, P.; Liu, L.; Ju, C.C. Efficient Projection and Coding Tools for 360° Video. IEEE J. Emerg. Sel. Top. Circuits Syst. 2019, 9, 84–97. [Google Scholar] [CrossRef]
- Song, J.; Yang, F.; Zhang, W.; Zou, W.; Fan, Y.; Di, P. A Fast FoV-Switching DASH System Based on Tiling Mechanism for Practical Omnidirectional Video Services. IEEE Trans. Multimed. 2020, 22, 2366–2381. [Google Scholar] [CrossRef]
- Tang, M.; Wen, J.; Zhang, Y.; Gu, J.; Junker, P.; Guo, B.; Jhao, G.; Zhu, Z.; Han, Y. A Universal Optical Flow Based Real-Time Low-Latency Omnidirectional Stereo Video System. IEEE Trans. Multimed. 2019, 21, 957–972. [Google Scholar] [CrossRef]
- Fan, X.; Lei, J.; Fang, Y.; Huang, Q.; Ling, N.; Hou, C. Stereoscopic Image Stitching via Disparity-Constrained Warping and Blending. IEEE Trans. Multimed. 2020, 22, 655–665. [Google Scholar] [CrossRef]
- Yu, M.; Lakshman, H.; Girod, B. A framework to evaluate omnidirectional video coding schemes. In Proceedings of the 2015 IEEE International Symposium on Mixed and Augmented Reality, Fukuoka, Japan, 29 September–3 October 2015; pp. 31–36. [Google Scholar]
- Jabar, F.; Ascenso, J.; Queluz, M.P. Perceptual analysis of perspective projection for viewport rendering in 360° images. In Proceedings of the 2017 IEEE International Symposium on Multimedia (ISM), Taichung, Taiwan, 11–13 December 2017; pp. 53–60. [Google Scholar]
- Sharpless, T.K.; Postle, B.; German, D.M. Pannini: A new projection for rendering wide angle perspective images. In Proceedings of the Sixth International Conference on Computational Aesthetics in Graphics, London, UK, 14–15 June 2010; pp. 9–16. [Google Scholar]
- Weisstein, E.W. Cylindrical Projection. From MathWorld—Wolfram Web Resource. Available online: http://mathworld.wolfram.com/CylindricalProjection.html (accessed on 18 December 2020).
- Kim, Y.W.; Lee, C.R.; Cho, D.Y.; Kwon, Y.H.; Choi, H.J.; Yoon, K.J. Automatic content-aware projection for 360 videos. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4753–4761. [Google Scholar]
- Kopf, J.; Lischinski, D.; Deussen, O.; Cohen-Or, D.; Cohen, M. Locally Adapted Projections to Reduce Panorama Distortions. In Computer Graphics Forum; Blackwell Publishing Ltd.: Oxford, UK, 2009; Volume 28, pp. 1083–1089. [Google Scholar]
- Tehrani, M.A.; Majumder, A.; Gopi, M. Correcting perceived perspective distortions using object specific planar transformations. In Proceedings of the 2016 IEEE International Conference on Computational Photography (ICCP), Evanston, IL, USA, 13–15 May 2016; pp. 1–10. [Google Scholar]
- Jabar, F.; Ascenso, J.; Queluz, M.P. Content-aware perspective projection optimization for viewport rendering of 360° images. In Proceedings of the 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China, 8–12 July 2019; pp. 296–301. [Google Scholar]
- Hou, X.; Zhang, L. Saliency detection: A spectral residual approach. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar]
- Kopf, J.; Uyttendaele, M.; Deussen, O.; Cohen, M.F. Capturing and viewing gigapixel images. ACM Trans. Graph. 2017, 26, 93-es. [Google Scholar] [CrossRef]
- Snyder, J.P. Map Projections—A Working Manual; US Government Printing Office: Washington, DC, USA, 1987.
- Weisstein, E.W. Least Squares Fitting-Polynomial. From MathWorld—A Wolfram Web Resource. Available online: http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html (accessed on 18 December 2020).
- Shanno, D.F. Conditioning of quasi-Newton methods for function minimization. Math. Comput. 1970, 24, 647–656. [Google Scholar] [CrossRef]
- Int. Telecommun. Union Methodology for the Subjective Assessment of the Quality of Television Pictures ITU-R Recommendation BT.500-14; International Telecommunication Union: Geneva, Switzerland, 2019. [Google Scholar]
Perspective Projection | Stereographic Projection | Curved UV | Curved UV Surface with | |
---|---|---|---|---|
75 | 0.039604 | 0.002697 | 0.000010 | 0.173255 |
90 | 0.078799 | 0.005504 | 0.000051 | 0.335975 |
120 | 0.229415 | 0.016779 | 0.000289 | 0.559911 |
150 | 0.517675 | 0.039523 | 0.000701 | 0. 597737 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, G.-W.; Han, J.-K. Viewport Rendering Algorithm with a Curved Surface for a Wide FOV in 360° Images. Appl. Sci. 2021, 11, 1133. https://doi.org/10.3390/app11031133
Lee G-W, Han J-K. Viewport Rendering Algorithm with a Curved Surface for a Wide FOV in 360° Images. Applied Sciences. 2021; 11(3):1133. https://doi.org/10.3390/app11031133
Chicago/Turabian StyleLee, Geon-Won, and Jong-Ki Han. 2021. "Viewport Rendering Algorithm with a Curved Surface for a Wide FOV in 360° Images" Applied Sciences 11, no. 3: 1133. https://doi.org/10.3390/app11031133
APA StyleLee, G. -W., & Han, J. -K. (2021). Viewport Rendering Algorithm with a Curved Surface for a Wide FOV in 360° Images. Applied Sciences, 11(3), 1133. https://doi.org/10.3390/app11031133