Multidimensional Emotion Recognition Based on Semantic Analysis of Biomedical EEG Signal for Knowledge Discovery in Psychological Healthcare
Abstract
:1. Introduction
- Whether there are similar brain activities when similar emotions occurred?
- Can those similar emotions be correctly distinguished based on EEG signal?
- Can each electrode successfully recognize different emotions?
- Are only high frequency bands suitable for recognizing emotions?
- Can partial fluctuation pattern (PFP) features be efficient on recognition of emotions?
2. Related Work
3. Motivation
4. Emotional Quantification Analysis
4.1. Emotional Similarity Matrixes
4.2. Emotion Mapping
4.3. Emotional Similarity Quantification Algorithm
Algorithm 1. ESQ |
Input: QS, SS, OA Output: AQS 1: Begin 2: FS = new array [length(QS)[0], length(QS)[1]]; 3: OAs = new array[8]; 4: for i = 0, i < length(QS)[0], i++ do 5: for j = 0, j < length(QS)[1], j ++ do 6: FS += [QS(i,j) * SS(i,j)]; 7: OAs[j] = j * (360/length(QS)[1]); 8: end for 9: MP = [max(FS(i,j))[0], max(FS(i,j))[1]]; 10: OA = OAs[index(max(FS(i,j)))]; 11: Ang = OA + 45/(MP[0]/MP[1] + 1); 12: RQ(x,y) = (QS(i,j), QS(i,j) * tan(Ang/180 * π); 13: RS(x) = SS(i,j)/cos((45-Ang)/180 * π) * cos(Ang/180 * π); 14: RS(y) = SS(i,j)/cos((45-Ang)/180 * π) * sin(Ang/180 * π); 15: AQ(x, y) = (min(RQ(x), RS(x)) + |RQ(x) − RS(x)|/2, min(RQ(y), RS(y)) + |RQ(y) − RS(y)|/2); 16: AQS += [AQ(x, y)]; 17: end for |
5. EEG-Based Multidimensional Emotion Recognition Model
5.1. Data Preprocessing
5.2. Recognition Criteria of Multidimensional Emotions
5.3. Extraction of Partial Fluctuation Patterns Features
5.4. Partial Fluctuation Pattern Quantification Algorithm
Algorithm 2. PFPQ |
Input: EEG signals as ES Output: Criteria rule for recognition of emotions as RR and PFP features as PFPs 1: Begin 2: for c = 0, c < 32, c++ do 3: Transform ESc with Wavelet transform into 4 bands as WESc; 4: for i = 0, i < 4, i++ do 5: Detect wave crest and trough of WESc,i as WCTc,i; 6: Transform WCTc,i according to the amplitude to A-E as AEc,i; 7: REc,i = AEc,i.split(“E”); 8: Build tree structure of REc,i based on frequency as RETreec,i; 9: Set support threshold as stc,i, confidence threshold as ctc,i; 10: for k = 0, k < length(RETreec,i), k ++ do 11: Search sequence on tree structure as seq, and frequency of seq as fseq; 12: if fseq > stc,i then 13: RR += [seq, fseq]; 14. Add next tree node to seq as seq-nod, the frequency of seq-nod as fnod; 15: if fnod > ctc,i then 16: AR += [seq-nod, fnod]; 17: end if 18: end if 19: end for 20: RR += AR; 21: srt = new array[9]; 22: for p = 0, p < length(RR), r ++ do 23: if length (RRp) == 1 then 24: Label RRp as “Representative” rule; 25: else do Calculate emotional similarity of RRp as es; 26: if es matches threshold value in srt then 27: Label RRp as subcategory of similar rule; 28: end if 29: end if 30: end for 31: PFPs = new array []; 32: Joint REc,i as a bidimensional hash set of combined sequences CSS; 33: for s = 0, s < length(CSS), s++ do 34: for r = 0, r < length(RR), r++ do 35: for ss = 0, ss < length(CSS[s]), ss++ do 36: if CSS[s][ss] == RRr[0] then 37: MN++; 38: Acc += RRr[1]; 39: MR[s] += [RRr[0]] 40: if CSS[s][ss] in MR then 41: Sm++; 42: end if 43: end if 44: end for 45: end for 46: end for 47: Den = (2*MN)/((2*length(REc,i) − length(CSS)) * (length(REc,i) − length(CSS) + 1)); 48: Rep = Sm/MN; 49: Pol = (MN-MR[0])/MN; 50: PFPs = [MN, Acc, Den, Rep, Pol] 51: end for 52: return RR |
6. Experiment
6.1. Evaluation of Similar Fluctutation Patterns
6.2. Evaluation of EMER Model
6.3. Occurrence of Significant Flutuation Patterns
7. Discussion
8. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cabanac, M. What is emotion? Behav. Process. 2002, 60, 69–83. [Google Scholar] [CrossRef]
- Goshvarpour, A.; Abbasi, A.; Goshvarpour, A. An accurate emotion recognition system using ECG and GSR signals and matching pursuit method. Biomed. J. 2017, 40, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Abtahi, F.; Ro, T.; Li, W.; Zhu, Z. Emotion analysis using audio/video, EMG and EEG: A dataset and comparison study. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV 2018), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 10–19. [Google Scholar]
- Udovičić, G.; Ðerek, J.; Russo, M.; Sikora, M. Wearable emotion recognition system based on GSR and PPG signals. In Proceedings of the 2nd International Workshop on Multimedia for Personal Health and Health Care, Mountain View, CA, USA, 23 October 2017; pp. 53–59. [Google Scholar]
- Oude Bos, D. EEG-based emotion recognition. The Influence of Visual and Auditory Stimuli. Capita Sel. (MSc Course) 2006, 56, 1–17. [Google Scholar]
- Ekman, P.; Levenson, R.W.; Friesen, W.V. Autonomic nervous system activity distinguishes among emotions. Science 1983, 221, 1208–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lövheim, H. A new three-dimensional model for emotions and monoamine neurotransmitters. Med. Hypotheses 2012, 78, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Kringelbach, M.L.; O’Doherty, J.; Rolls, E.T.; Andrews, C. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb. Cortex 2003, 13, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Harmon-Jones, E.; Vaughn-Scott, K.; Mohr, S.; Sigelman, J.; Harmon-Jones, C. The effect of manipulated sympathy and anger on left and right frontal cortical activity. Emotion 2004, 4, 95. [Google Scholar] [CrossRef] [PubMed]
- Kalin, N.H.; Larson, C.; Shelton, S.E.; Davidson, R.J. Asymmetric frontal brain activity, cortisol, and behavior associated with fearful temperament in rhesus monkeys. Behav. Neurosci. 1998, 112, 286. [Google Scholar] [CrossRef] [PubMed]
- Kirmizi-Alsan, E.; Bayraktaroglu, Z.; Gurvit, H.; Keskin, Y.H.; Emre, M.; Demiralp, T. Comparative analysis of event-related potentials during Go/NoGo and CPT: Decomposition of electrophysiological markers of response inhibition and sustained attention. Brain Res. 2006, 1104, 114–128. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Tong, L.; Shu, J.; Zhuang, N.; Yan, B.; Zeng, Y. High Gamma Band EEG Closely Related to Emotion: Evidence From Functional Network. Front. Hum. Neurosci. 2020, 14. [Google Scholar] [CrossRef] [PubMed]
- Plutchik, R. The nature of emotions: Human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice. Am. Sci. 2001, 89, 344–350. [Google Scholar] [CrossRef]
- Osgood, C.E.; Suci, G.J.; Tannenbaum, P.H. The Measurement of Meaning; University of Illinois Press: Champaign, IL, USA, 1957. [Google Scholar]
- Chen, J.; Jiang, D.; Zhang, Y. A common spatial pattern and wavelet packet decomposition combined method for EEG-based emotion recognition. J. Adv. Comput. Intell. Intell. Inform. 2019, 23, 274–281. [Google Scholar] [CrossRef]
- Doma, V.; Pirouz, M. A comparative analysis of machine learning methods for emotion recognition using EEG and peripheral physiological signals. J. Big Data 2020, 7, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Mosa, A.H.; Al Machot, F.; Kyamakya, K. EEG-based emotion recognition approach for e-healthcare applications. In Proceedings of the 8th International Conference on Ubiquitous and Future Networks (ICUFN 2016), Vienna, Austria, 5–8 July 2016; pp. 946–950. [Google Scholar]
- Yin, Z.; Wang, Y.; Liu, L.; Zhang, W.; Zhang, J. Cross-subject EEG feature selection for emotion recognition using transfer recursive feature elimination. Front. Neurorobotics 2017, 11, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murugappan, M.; Rizon, M.; Nagarajan, R.; Yaacob, S.; Zunaidi, I.; Hazry, D. EEG feature extraction for classifying emotions using FCM and FKM. Int. J. Comput. Commun. 2007, 1, 21–25. [Google Scholar]
- Li, X.; Song, D.; Zhang, P.; Zhang, Y.; Hou, Y.; Hu, B. Exploring EEG features in cross-subject emotion recognition. Front. Neurosci. 2018, 12, 162. [Google Scholar] [CrossRef] [Green Version]
- Asghar, M.A.; Khan, M.J.; Amin, Y.; Rizwan, M.; Rahman, M.; Badnava, S.; Mirjavadi, S.S. EEG-based multi-modal emotion recognition using bag of deep features: An optimal feature selection approach. Sensors 2019, 19, 5218. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, N.; Zeng, Y.; Tong, L.; Zhang, C.; Zhang, H.; Yan, B. Emotion recognition from EEG signals using multidimensional information in EMD domain. BioMed Res. Int. 2017, 2017. [Google Scholar] [CrossRef]
- Jalilifard, A.; Rastegarnia, A.; Birgante Pizzolato, E.; Md Kafiul, I. Classification of emotions induced by horror and relaxing movies using single-channel EEG recordings. Int. J. Electr. Comput. Eng. 2020, 10, 3826–3838. [Google Scholar] [CrossRef]
- Taran, S.; Bajaj, V. Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method. Comput. Methods Programs Biomed. 2019, 173, 157–165. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, W.-L.; Lu, B.-L. Investigating EEG-Based Functional Connectivity Patterns for Multimodal Emotion Recognition. arXiv 2020, arXiv:2004.01973. [Google Scholar]
- Wan, Z.; Zhang, H.; Huang, J.; Zhou, H.; Yang, J.; Zhong, N. Single-channel EEG-based machine learning method for prescreening major depressive disorder. Int. J. Inf. Technol. Decis. Mak. 2019, 18, 1579–1603. [Google Scholar] [CrossRef]
- Song, T.; Zheng, W.; Song, P.; Cui, Z. EEG emotion recognition using dynamical graph convolutional neural networks. IEEE Trans. Affect. Comput. 2018, 11, 532–541. [Google Scholar] [CrossRef] [Green Version]
- Ismail, W.W.; Hanif, M.; Mohamed, S.; Hamzah, N.; Rizman, Z.I. Human emotion detection via brain waves study by using electroencephalogram (EEG). Int. J. Adv. Sci. Eng. Inf. Technol. 2016, 6, 1005–1011. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Yu, J.; Song, M.; Yu, C.; Wang, F.; Sun, P.; Wang, D.; Zhang, D. EEG correlates of ten positive emotions. Front. Hum. Neurosci. 2017, 11, 26. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Xu, H.; Liu, X.; Lu, S. Emotion recognition from multichannel EEG signals using K-nearest neighbor classification. Technol. Health Care 2018, 26, 509–519. [Google Scholar] [CrossRef]
- Wei, C.; Chen, L.-l.; Song, Z.-z.; Lou, X.-g.; Li, D.-d. EEG-based emotion recognition using simple recurrent units network and ensemble learning. Biomed. Signal Process. Control 2020, 58, 101756. [Google Scholar] [CrossRef]
- Zheng, W.-L.; Zhu, J.-Y.; Lu, B.-L. Identifying stable patterns over time for emotion recognition from EEG. IEEE Trans. Affect. Comput. 2017, 10, 417–429. [Google Scholar] [CrossRef] [Green Version]
- Jatupaiboon, N.; Pan-ngum, S.; Israsena, P. Real-time EEG-based happiness detection system. Sci. World J. 2013, 2013. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Wang, C.-H.; Jung, T.-P.; Wu, T.-L.; Jeng, S.-K.; Duann, J.-R.; Chen, J.-H. EEG-based emotion recognition in music listening. IEEE Trans. Biomed. Eng. 2010, 57, 1798–1806. [Google Scholar]
- Balasubramanian, G.; Kanagasabai, A.; Mohan, J.; Seshadri, N.G. Music induced emotion using wavelet packet decomposition—An EEG study. Biomed. Signal Process. Control 2018, 42, 115–128. [Google Scholar] [CrossRef]
- Al Machot, F.; Elmachot, A.; Ali, M.; Al Machot, E.; Kyamakya, K. A deep-learning model for subject-independent human emotion recognition using electrodermal activity sensors. Sensors 2019, 19, 1659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Huang, J.; Zhou, H.; Zhong, N. Human emotion recognition with electroencephalographic multidimensional features by hybrid deep neural networks. Appl. Sci. 2017, 7, 1060. [Google Scholar] [CrossRef] [Green Version]
- Cimtay, Y.; Ekmekcioglu, E. Investigating the use of pretrained convolutional neural network on cross-subject and cross-dataset EEG emotion recognition. Sensors 2020, 20, 2034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.S.; Lee, Y.K.; Pae, D.S.; Lim, M.T.; Kim, D.W.; Kang, T.K. Fast Emotion Recognition Based on Single Pulse PPG Signal with Convolutional Neural Network. Appl. Sci. 2019, 9, 3355. [Google Scholar] [CrossRef] [Green Version]
- Torres, E.P.; Torres, E.A.; Hernández-Álvarez, M.; Yoo, S.G. EEG-Based BCI Emotion Recognition: A Survey. Sensors 2020, 20, 5083. [Google Scholar] [CrossRef]
- Al-Nafjan, A.; Hosny, M.; Al-Ohali, Y.; Al-Wabil, A. Review and classification of emotion recognition based on EEG brain-computer interface system research: A systematic review. Appl. Sci. 2017, 7, 1239. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Liu, H.; Zhou, T. A Sequential Emotion Approach for Diagnosing Mental Disorder on Social Media. Appl. Sci. 2020, 10, 1647. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.H.; Hu, G.L.; Wang, L. Psychological disorder identifying method based on emotion perception over social networks. Int. J. Environ. Res. Public Health 2019, 16, 953. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Hu, G.; Zhou, T. Semantic analysis of learners’ emotional tendencies on online MOOC education. Sustainability 2018, 10, 1921. [Google Scholar] [CrossRef] [Green Version]
- Russell, J.A. A circumplex model of affect. J. Personal. Soc. Psychol. 1980, 39, 1161. [Google Scholar] [CrossRef]
- Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.-S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. Deap: A database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 2011, 3, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Burnett, S.; Bird, G.; Moll, J.; Frith, C.; Blakemore, S.-J. Development during adolescence of the neural processing of social emotion. J. Cogn. Neurosci. 2009, 21, 1736–1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Emotion | Category | |||||||
---|---|---|---|---|---|---|---|---|
Pleasure | Excitement | Arousal | Distress | Misery | Depression | Sleepiness | Contentment | |
Joy | 87 | 40 | 7 | / | / | / | / | 17 |
Intimacy | 47 | 63 | 8 | / | / | 1 | 2 | 30 |
Trust | 52 | 6 | 1 | 1 | 2 | / | 6 | 83 |
Confidence | 33 | 8 | 22 | 2 | 2 | 1 | / | 83 |
Concentration | 11 | 9 | 20 | 2 | 2 | 3 | 65 | 39 |
Anxiety | 3 | 3 | 44 | 47 | 14 | 40 | / | / |
Insecurity | 2 | 6 | 56 | 40 | 12 | 33 | 1 | 1 |
Fear | 2 | 6 | 73 | 34 | 24 | 11 | 1 | / |
Surprise | 42 | 72 | 32 | 1 | 1 | 2 | / | 1 |
Sadness | 2 | 1 | 1 | 12 | 55 | 78 | 2 | / |
Pain | 1 | 1 | 3 | 69 | 42 | 32 | 3 | / |
Despair | 1 | / | 1 | 33 | 57 | 57 | 2 | / |
Tired | 2 | 1 | 1 | 9 | 2 | 36 | 100 | / |
Shame | 3 | 3 | 5 | 52 | 58 | 27 | 3 | / |
Disgust | 2 | 2 | 3 | 18 | 22 | 61 | 42 | 1 |
Anger | 2 | 22 | 4 | 49 | 52 | 21 | / | 1 |
Manic | 7 | 64 | 53 | 9 | 7 | 10 | / | 1 |
Passion | 7 | 64 | 68 | 3 | 3 | 1 | / | 5 |
Gratitude | 37 | 5 | 2 | / | 1 | / | 3 | 103 |
Hope | 26 | 7 | 17 | 2 | / | / | 31 | 68 |
Relaxation | 33 | 6 | 1 | / | / | 1 | 50 | 60 |
Parameter | Definition |
---|---|
FS | The final similarity matrix. |
QS | The questionnaire similarity matrix. |
SS | The semantic similarity matrix. |
MPj | The top jth similarity value. |
Ang | The angle of emotion in valence-arousal domains |
OA | The angle of basic emotion category in valence-arousal domains. |
RQ(x,y) | Reference coordinate based on QS. |
RS(x,y) | Reference coordinate based on SS. |
AQ(x,y) | The actual coordinate of emotion in valence-arousal domains. |
Subcategory | Definition |
---|---|
HA | Emotions clustered in the first and second quadrant |
LA | Emotions clustered in the third and fourth quadrant |
HV | Emotions clustered in the first and fourth quadrant |
LV | Emotions clustered in the second and third quadrant |
HVHA | Emotions clustered in the first quadrant |
HVLA | Emotions clustered in the second quadrant |
LVLA | Emotions clustered in the third quadrant |
LVHA | Emotions clustered in the fourth quadrant |
Similarity | Emotions clustered in one quadrant with close distance |
Parameter | Definition |
---|---|
MN | The matched number of PFP sequences. |
Acc | The accumulation of intensity values in matched PFP sequences. |
Den | The ratio of the MN to the number of PFP sequences. |
Rep | The repetitive rate of the same matched rules. |
Pol | The occurred rate of matched polynomial rules. |
Inti | Intensity value of ith matched PFP sequence. |
Itm | The number of PFP in signal. |
Mx | The maximum length in criterial rule. |
Sm | The number of same matched PFP sequences. |
Mlj | The number of matched PFP sequences with combination length of j. |
F1-Score | Precision | Recall |
---|---|---|
0.9364 | 0.9654 | 0.9317 |
Emotion | Accuracy | Standard Deviation |
---|---|---|
Anger | 99.77% | 1.20 |
Anxiety | 96.56% | 3.96 |
Concentration | 90.20% | 6.03 |
Confidence | 99.31% | 1.91 |
Despair | 99.96% | 0.44 |
Disgust | 95.99% | 4.05 |
Fear | 85.48% | 5.95 |
Gratitude | 99.86% | 1.58 |
Hope | 100.00% | 0 |
Insecurity | 99.77% | 1.33 |
Intimacy | 43.45% | 5.81 |
Joy | 95.18% | 4.10 |
Manic | 73.39% | 6.38 |
Pain | 99.70% | 1.19 |
Passion | 93.24% | 5.08 |
Relaxation | 99.15% | 3.07 |
Sadness | 100.00% | 0 |
Surprise | 96.62% | 2.53 |
Tired | 99.55% | 1.56 |
Trust | 92.09% | 4.99 |
Anger | 99.77% | 1.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Liu, H.; Zhou, T.; Liang, W.; Shan, M. Multidimensional Emotion Recognition Based on Semantic Analysis of Biomedical EEG Signal for Knowledge Discovery in Psychological Healthcare. Appl. Sci. 2021, 11, 1338. https://doi.org/10.3390/app11031338
Wang L, Liu H, Zhou T, Liang W, Shan M. Multidimensional Emotion Recognition Based on Semantic Analysis of Biomedical EEG Signal for Knowledge Discovery in Psychological Healthcare. Applied Sciences. 2021; 11(3):1338. https://doi.org/10.3390/app11031338
Chicago/Turabian StyleWang, Ling, Hangyu Liu, Tiehua Zhou, Wenlong Liang, and Minglei Shan. 2021. "Multidimensional Emotion Recognition Based on Semantic Analysis of Biomedical EEG Signal for Knowledge Discovery in Psychological Healthcare" Applied Sciences 11, no. 3: 1338. https://doi.org/10.3390/app11031338
APA StyleWang, L., Liu, H., Zhou, T., Liang, W., & Shan, M. (2021). Multidimensional Emotion Recognition Based on Semantic Analysis of Biomedical EEG Signal for Knowledge Discovery in Psychological Healthcare. Applied Sciences, 11(3), 1338. https://doi.org/10.3390/app11031338