An Experimental OpenFlow Proposal over Legacy GPONs to Allow Real-Time Service Reconfiguration Policies
Abstract
:1. Introduction
2. State of the Art
3. Experimental OpenFlow Proposal over Legacy GPONs to Allow Real-Time Service Reconfiguration Policies
3.1. Implementation of a SDN Approach over Legacy GPON Equipment
3.2. Design of a SDN Management Layer to Control Service Reconfiguration Policies on the SDN-GPON Model
4. Experimental Setup and Results
4.1. Description of the Legacy GPON Testbed
4.2. Description of the Case of Use
4.3. Selection of Parameters in the Sliding Window
4.4. Analysis and Results of the Algorithm Performance of the SDN Management Layer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kerpez, K.J.; Cioffi, J.M.; Ginis, G.; Goldburg, M.; Galli, S.; Silverman, P. Software-defined access networks. IEEE Commun. Mag. 2014, 52, 152–159. [Google Scholar] [CrossRef]
- Thyagaturu, A.S.; Mercian, A.; McGarry, M.P.; Reisslein, M.; Kellerer, W. Software Defined Optical Networks (SDONs): A Comprehensive Survey. IEEE Commun. Surv. Tutorials 2016, 18, 2738–2786. [Google Scholar] [CrossRef] [Green Version]
- Open Networking Foundation (ONF). Available online: https://www.opennetworking.org/ (accessed on 3 October 2020).
- NETCONF Configuration Protocol. Network Configuration Working Group. Available online: https://tools.ietf.org/wg/netconf (accessed on 3 October 2020).
- RESTCONF Protocol. Internet Engineering Task Force (IETF). Available online: https://tools.ietf.org/html/rfc8040 (accessed on 3 October 2020).
- State of Fibre. New Market Forecast 2020–2026 Revealed. Available online: https://www.ftthcouncil.eu/home/latest-news/state-of-fibre-new-market-forecasts-2020-2026-revealed?news_id=3863&back=/resources/key-publications (accessed on 10 December 2020).
- Europe Broadband Status Market Forecast by 2020–2025, FTTH Council. Available online: https://www.ftthcouncil.eu/documents/Reports/2019/FTTH%20Council%20Europe%20%20Forecast%20for%20EUROPE%202020-2025.pdf (accessed on 1 October 2020).
- Lee, S.S.W.; Li, K.-Y.; Wu, M.-S. Design and implementation of a GPON-based virtual Open Flow-enabled SDN switch. IEEE/OSA. J. Lightwave Technol. 2016, 34, 2552–2561. [Google Scholar] [CrossRef]
- Rouskas, G.N.; Dutta, R.; Baldine, I. A New Internet Architecture to Enable Software Defined Optics and Evolving Optical Switching Models. In Proceedings of the International Conference Broadband Communications Network Systems (BROADNETS), London, UK, 8–11 September 2008; pp. 71–76. [Google Scholar]
- Gu, R.; Ji, Y.; Wei, P.; Zhang, S. Software defined flexible and efficient passive optical networks for intra-datacenter communications. Opt. Switch. Netw. 2014, 14, 289–302. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, Y. A Design of 10 Gigabit Capable Passive Optical Network (XG-PON1) Architecture Based on Software De-Fined Network (SDN); (ICOIN): Siem Reap, Cambodia, 2015. [Google Scholar]
- Amokrane, A.; Hwang, J.; Xiao, J.; Anerousis, N. Software defined enterprise passive optical network. In Proceedings of the 10th International Conference on Network and Service Management (CNSM) and Workshop, Rio de Janeiro, Brazil, 17–21 November 2014; pp. 406–411. [Google Scholar]
- Parol, P.; Pawlowski, M. Towards networks of the future: SDN paradigm introduction to PON networking for business applications. In Proceedings of the 2013 Federated Conference on Computer Science and Information Systems), Kraków, Poland, 8–11 September 2013. [Google Scholar]
- The Open Source Project VOLTHA. Available online: https://www.opennetworking.org/voltha/ (accessed on 3 October 2020).
- Khalili, H.; Sallent, S.; Piney, J.R.; Rincón, D. A proposal for an SDN-based SIEPON architecture. Opt. Commun. 2017, 403, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Lia, C.; Guoa, W.; Wanga, W.; Hua, W.; Xiab, M. Programmable bandwidth management in software-defined EPON architecture. Opt. Commun. 2016, 370, 43–48. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y.; Jialin, W.; Ji, Y.; Yi, L.; Han, J.; Lee, Y. Experimental demonstration of remote unified control for Open-Flow-based software-defined optical access networks. Photonic Netw. Commun. 2016, 31, 568–577. [Google Scholar]
- Wang, F.; Liu, B.; Zhang, L.; Jin, F.; Zhang, O.; Tian, Q.; Tian, F.; Rao, L.; Xin, X. Dynamic bandwidth allocation based on multiservice in software-defined wavelength-division multiplexing time-division multiplexing passive optical net-work. Opt. Eng. 2017, 56, 036104. [Google Scholar] [CrossRef]
- Hwang, I.-S.; Rianto, A.; Pakpahan, A.F. Software-defined Peer-to-Peer file sharing architecture for TWDM PON. In Proceedings of the 2018 27th Wireless and Optical Communication Conference (WOCC), Hualien, Taiwan, 30 April–1 May 2018; pp. 1–4. [Google Scholar]
- Ruffin, M.; Slyne, F.; Bluemm, C.; Kitsuwan, N.; McGettrick, S. Software defined networking for next generation con-verged metro-access networks. Opt. Fiber Technol. 2015, 26, 31–41. [Google Scholar] [CrossRef]
- Yan, B.; Zhou, J.; Wu, J.; Zhao, Y. Poster: SDN based energy management system for optical access network. In Proceedings of the 9th International Conference on Communications and Networking in China, Shanghai, China, 14–16 August 2014; pp. 658–659. [Google Scholar]
- Quian, C.; Li, Y.; Zhang, O.; Cao, B.; Li, Z.; Wang, M. Staged priority-based dynamic bandwidth allocation in soft-ware-defined hybrid passive optical network. Opt. Eng. 2018, 57, 126101. [Google Scholar]
- Zhou, L.; Peng, G.; Chand, N. Demonstration of a novel software-defined Flex PON. Photonic Netw. Commun. 2015, 29, 282–290. [Google Scholar] [CrossRef]
- Open vSwitch. Available online: https://www.openvswitch.org/ (accessed on 15 November 2020).
- Open Day Light SDN Controller. Available online: https://www.opendaylight.org/ (accessed on 15 November 2020).
- Salman, O.; Elhajj, I.H.; Kayssi, A.; Chehab, A. SDN Controllers: A Comparative Study. In Proceedings of the 18th Mediter-ranean Electrotechnical Conference (MELECON), Lemesos, Cyprus, 18–20 April 2016. [Google Scholar]
- Paliwal, M.; Shrimankar, D.; Tembhurne, O. Controllers in SDN: A Review Report. IEEE Access 2018, 6, 36256–36270. [Google Scholar] [CrossRef]
- OpenFlow Switch Specification and Meters, OpenFlow Switch Specification. Available online: https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf (accessed on 15 November 2020).
- Kramer, G.; Mukherjee, B.; Dixit, S.; Ye, Y.; Hirth, R. Supporting differentiated classes of service in Ethernet passive optical networks. J. Opt. Netw. 2002, 1, 280–298. [Google Scholar]
- Telnet Vendor Web Page, Telnet R-I. Available online: https://www.telnet-ri.es/ (accessed on 4 October 2020).
- Wireshark: Network Protocol Analyzer. Available online: https://www.wireshark.org/ (accessed on 4 October 2020).
Flexible Internet Plans | Basic Bandwidth | Excess Bandwidth |
---|---|---|
Basic Flexible Plan | ≤100 Mbps | +20% Mbps |
Premium Flexible Plan | >100 Mbps | +30% Mbps |
Interval Time | User Transmission Rate (Mbps) | Expected Allocated Bandwidth (Mpbs) |
---|---|---|
0–60 s | 100 Mbps | 100 Mbps |
60–360 s | 110 Mbps | 110 Mbps |
360–660 s | 120 Mbps | 120 Mbps |
660–960 s | 130 Mbps | 120 Mbps |
960–1020 s | 100 Mbps | 100 Mbps |
Interval Time | User Transmission Rate (Mbps) | Expected Allocated Bandwidth (Mpbs) |
---|---|---|
0–60 s | 150 Mbps | 150 Mbps |
60–360 s | 170 Mbps | 170 Mbps |
360–660 s | 190 Mbps | 190 Mbps |
660–960 s | 210 Mbps | 195 Mbps |
960–1020 s | 150 Mbps | 150 Mbps |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merayo, N.; de Pintos, D.; Aguado, J.C.; de Miguel, I.; Durán, R.J.; Fernández, P.; Lorenzo, R.M.; Abril, E.J. An Experimental OpenFlow Proposal over Legacy GPONs to Allow Real-Time Service Reconfiguration Policies. Appl. Sci. 2021, 11, 903. https://doi.org/10.3390/app11030903
Merayo N, de Pintos D, Aguado JC, de Miguel I, Durán RJ, Fernández P, Lorenzo RM, Abril EJ. An Experimental OpenFlow Proposal over Legacy GPONs to Allow Real-Time Service Reconfiguration Policies. Applied Sciences. 2021; 11(3):903. https://doi.org/10.3390/app11030903
Chicago/Turabian StyleMerayo, Noemí, David de Pintos, Juan C. Aguado, Ignacio de Miguel, Ramón J. Durán, Patricia Fernández, Rubén M. Lorenzo, and Evaristo J. Abril. 2021. "An Experimental OpenFlow Proposal over Legacy GPONs to Allow Real-Time Service Reconfiguration Policies" Applied Sciences 11, no. 3: 903. https://doi.org/10.3390/app11030903
APA StyleMerayo, N., de Pintos, D., Aguado, J. C., de Miguel, I., Durán, R. J., Fernández, P., Lorenzo, R. M., & Abril, E. J. (2021). An Experimental OpenFlow Proposal over Legacy GPONs to Allow Real-Time Service Reconfiguration Policies. Applied Sciences, 11(3), 903. https://doi.org/10.3390/app11030903