Correlation between Soil Bacterial Community Structure and Soil Properties in Cultivation Sites of 13-Year-Old Wild-Simulated Ginseng (Panax ginseng C.A. Meyer)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Sample Collection
2.2. Soil Analysis
2.3. Soil DNA Extraction and PCR Amplification
2.4. Pyrosequencing and Data Processing
2.5. Data Analysis
3. Results and Discussion
3.1. Location Environment (Topography, Forest Physiognomy, Soil Properties) of the Study Area
3.2. Bacterial Community Profiles
3.3. Correlation between Soil Bacterial Community and Soil Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, K.; Huh, J.H.; Um, Y.; Jeon, K.S.; Kim, H.J. The Comparative of Growth Characteristics and Ginsenoside Contents in Wild-simulated Ginseng (Panax ginseng C.A. Meyer) on Different Years by Soil Properties of Cultivation Regions. Korean J. Plant. Resour. 2020, 33, 651–658. [Google Scholar]
- Lee, D.S. Weather characteristic and growth of a forest ginseng cultivation site. J. Korean Soc. For. Sci. 2011, 99, 863–870. [Google Scholar]
- Kim, K.; Um, Y.; Jeong, D.H.; Kim, H.J.; Kim, M.J.; Jeon, K.S. Study on the correlation between the soil bacterial community and growth characteristics of wild-simulated ginseng (Panax ginseng C.A. Meyer). Korean J. Environ. Biol. 2019, 37, 380–388. [Google Scholar] [CrossRef]
- Falkowski, P.G.; Fenchel, T.; Delong, E.F. The microbial engines that drive Earth’s biogeochemical cycles. Science 2008, 320, 1034–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, R.; Kumar, M.; Varma, A. Role of PGPR in soil fertility and plant health. In Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plant; Egamberdieva, D., Shrivastava, S., Varma, A., Eds.; Springer: Basel, Switzerland, 2015; pp. 247–260. [Google Scholar]
- Busby, P.E.; Soman, C.; Wagner, M.R.; Friesen, M.L.; Kremer, J.; Bennett, A.; Morsy, M.; Eisen, J.A.; Leach, J.E.; Dangl, J.L. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 2017, 15, e2001793. [Google Scholar] [CrossRef]
- Song, X.; Tao, B.; Guo, J.; Li, J.; Chen, G. Changes in the microbial community structure and soil chemical properties of vertisols under different cropping systems in Northern China. Front. Environ. Sci. 2018, 6, 132. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Liu, Q.; Li, Z.; Cheng, W.; Sun, J.; Guo, Z.; Li, Y.; Zhou, Z.; Meng, D.; Li, H.; et al. Environmental factors shaping the diversity of bacterial communities that promote rice production. BMC Microbiol. 2018, 18, 51. [Google Scholar] [CrossRef] [Green Version]
- Pettersson, M. Factors Affecting the Rates of Change in Soil Bacterial Communities; University of Lund: Lund, Sweden, 2004; pp. 17–27. [Google Scholar]
- Noll, M.; Wellinger, M. Changes of the soil ecosystem along a receding glacier: Testing the correlation between environmental factors and bacterial community structure. Soil Biol. Biochem. 2008, 40, 2611–2619. [Google Scholar] [CrossRef]
- Gao, P.; Xu, W.; Songtag, P.; Li, X.; Xue, G.; Liu, T.; Sun, W. Correlating microbial community compositions with environmental factors in activated sludge from four full-scale municipal wastewater treatment plants in Shanghai, China. Environ. Biotechnol. 2016, 100, 4633–4673. [Google Scholar] [CrossRef]
- Kim, K.Y.; Samaddar, S.; Chatterjee, P.; Krishnammorthy, R.; Jeon, S.Y.; Sa, T.M. Structural and functional responses of microbial community with respect to salinity levels in a coastal reclamation land. Appl. Soil Ecol. 2019, 137, 96–105. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, Y.; Wommack, K.E.; Wilhelm, S.W.; DeBruyn, J.M.; Sherfy, A.C.; Zhuang, J.; Radosevich, M. Lysogenic reproductive strategies of viral communities vary with soil depth and are correlated with bacterial diversity. Soil Biol. Biochem. 2020, 144, 107767. [Google Scholar] [CrossRef]
- Roy, K.; Ghosh, D.; DeBruyn, J.M.; Dasgupta, T.; Wommack, K.E.; Liang, X.; Wagner, R.E.; Radosevich, M. Temporal dynamics of soil virus and bacterial populations in agricultural and early plant successional soils. Front. Microbiol. 2020, 11, 1494. [Google Scholar] [CrossRef] [PubMed]
- Prasad, R.; Kamal, S.; Sharma, P.K.; Oelmueller, R.; Varma, A. Root endophyte Piriformospora indica DSM 11827 alters plants morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera. J. Basic Microbiol. 2013, 52, 1016–1024. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.L.; Kim, Y.J.; Hoang, V.A.; Subramaniyam, S.; Kang, J.P.; Kang, C.H.; Yang, D.C. Bacterial diversity and community structure in Korean ginseng field soil are shifted by cultivation time. PLoS ONE 2016, 11, e0155055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, L.; Xu, J.; Li, Y.; Fang, H.; Niu, W.; Li, X.; Zhang, Y.; Ding, W.; Chen, S. Manipulation of microbial community in the rhizosphere alleviates the replanting issues in Panax ginseng. Soil Biol. Biochem. 2018, 125, 64–74. [Google Scholar] [CrossRef]
- Hartmann, M.; Nikalus, P.A.; Zimmermann, S.; Schmutz, S.; Kremer, J.; Abarenkov, K.; Lüscher, P.; Widmer, F.; Frey, B. Resistance and resilience of the forest soil microbiome to logging associated compaction. ISME J. 2014, 8, 226–244. [Google Scholar] [CrossRef]
- Li, H.; Ye, D.; Wang, X.; Settles, M.L.; Wang, J.; Hao, Z.; Zhou, L.; Dong, P.; Jiang, Y.; Ma, Z.S. Soil bacterial communities of different natural forest types in Northeast Chaina. Plant. Soil 2014, 383, 203–216. [Google Scholar] [CrossRef]
- Lee, B.J.; Eo, S.H. Soil bacterial community in red pine forest of Mt. Janggunbong, Bonghwa-gun, Gyeongbuk, Korea, using next generation sequencing. J. Korean Soc. For. Sci. 2017, 106, 121–129. [Google Scholar]
- Kim, K.; Jeong, D.; Kim, H.J.; Jeon, K.; Kim, M.; Um, Y. A study on growth characteristics of wild-simulated ginseng (Panax ginseng C. A. Meyer) by direct seeding and transplanting. Korean J. Plant. Resour. 2019, 32, 160–169. [Google Scholar]
- RDA. Analysis Manual of Comprehensive Examination Laboratory (Soil, Plant, Water and Liquid Manure); Rural Development Administration: Suwon, Korea, 2013; pp. 31–53. [Google Scholar]
- Canfora, L.; Vendramin, E.; Felici, B.; Tarricone, L.; Florio, A.; Benedetti, A. Vineyard microbiome variations during different fertilization practices revealed by 16S rRNA gene sequencing. Appl. Soil Ecol. 2018, 123, 71–80. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.K.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Opensource, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schloss, P.D. A high-throughput DNA sequence aligner for microbial ecology studies. PLoS ONE 2009, 4. [Google Scholar] [CrossRef] [PubMed]
- Nurek, T.; Gendek, A.; Roman, K. Forest residues as a renewable source of energy: Elemental composition and physical properties. BioResources 2019, 14, 6–20. [Google Scholar] [CrossRef]
- Schöler, A.; Jacquiod, S.; Vestergaard, G.; Schulz, S.; Schloter, M. Analysis of soil microbial communities based on amplicon sequencing of marker genes. Biol. Fertil. Soils 2017, 53, 485–489. [Google Scholar] [CrossRef]
- Anderson, M.J. DISTLM v. 5: A FORTRAN Computer Program to Calculate a Distance-Based Multivariate Analysis for a Linear Model; Department of Statistics, University of Auckland: Auckland, New Zealand, 2004; p. 10. [Google Scholar]
- Chung, J.M.; Moon, H.S. Soil Characteristics by the site types around Nari Basin in Ulleung island. J. Agric. Life Sci. 2011, 44, 44–50. [Google Scholar]
- Chamberlain, J.L.; Prisley, S.; Mcguffin, M. Understanding the relationship between American ginseng harvest and hardwood forest inventory and timber harvest to improve co-management of the forest of Eastern United States. J. Sustain. For. 2013, 32, 605–624. [Google Scholar] [CrossRef]
- Woo, S.Y.; Lee, D.S. A study on the growth and environment of Panax ginseng in the different forest strands (Ⅰ). Korean J. Agric. For. Meteorol. 2002, 4, 65–71. [Google Scholar]
- Kim, C.; Choo, G.C.; Cho, H.S.; Lim, J.T. Soil properties of cultivation sites for mountain-cultivated ginseng at local level. J. Ginseng Res. 2015, 39, 76–80. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.W.; Liu, M.C.; Li, W.H.; Zeng, F.S.; Qu, Y. Influence of ginseng cultivation under larch plantations on plant diversity and soil properties in Liaoning Province, Northeast China. J. Mt. Sci. 2016, 13, 1598–1608. [Google Scholar] [CrossRef]
- Binkley, D.; Fisher, R.F. Ecology and Management of Forest Soils, 4th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2013; pp. 39–57. [Google Scholar]
- Dong, L.; Li, Y.; Xu, J.; Yang, J.; Wei, G.; Shen, L.; Ding, W.; Chen, S. Biofertilizer regulate the soil microbial community and enhance Panax ginseng yields. Chin. Med. 2019, 14, 20. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.Y.; Kim, H.J.; Um, Y.R.; Jeon, K.S. Effect of Soil Properties and Soil Bacterial Community on Early Growth Characteristics of Wild-simulated Ginseng (Panax ginseng C.A. Meyer) in Coniferous and Mixed Forest. Korean J. Medicinal Crop. Sci. 2020, 28, 183–194. [Google Scholar] [CrossRef]
- Park, Y.D.; Kwon, T.H.; Eo, S.H. Analysis of soil bacterial community in Ihwaryeong and Yuksimnyeong restoration project sites linking the Ridgeline of Baekdudaegan. J. Agric. Life Sci. 2016, 50, 117–124. [Google Scholar] [CrossRef]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.T.; Jones, K.L.; Peterson, D.E.; Garrett, K.A.; Hulbert, S.H.; Paulitz, T.C. Members of soil bacterial communities sensitive to tillage and crop rotation. Soil Biol. Biochem. 2010, 42, 2111–2118. [Google Scholar] [CrossRef]
- Zhang, Y.; Cong, J.; Lu, H.; Li, G.; Qu, Y.; Su, X.; Zhou, J.; Li, D. Community structure and elevational diversity patterns of soil Acidobacteria. J. Environ. Sci. 2010, 26, 1717–1724. [Google Scholar] [CrossRef]
- Kielak, A.M.; Barreto, C.C.; Kowalchuk, G.A.; van Veen, J.A.; Kuramae, E.E. The Ecology of Acidobacteria: Moving beyond Genes and Genomes. Front. Microbiol. 2016, 7, 744. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Wang, Q.; Liu, N.; Li, L.; Zhang, C.; Liu, Z.; Zhang, Y. Effects of different leaf litters on the physicochemical properties and bacterial communities in Panax ginseng-growing soil. Appl. Soil Ecol. 2017, 111, 17–24. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, H.; Xu, C.; Ma, L.; Li, M.; Shao, C.; Guan, Y.; Liu, N.; Liu, Z.; Zhang, S.; et al. Analysis of rhizosphere bacterial and fungal communities associated with rusty root disease of Panax ginseng. Appl. Soil Ecol. 2019, 138, 245–252. [Google Scholar] [CrossRef]
- Mechri, B.; Mariem, F.B.; Baham, M.; Elhadj, S.B.; Hammami, M. Change in soil properties and the soil microbial community following land spreading of olive mill wastewater affects olive trees key physiological parameters and the abundance of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 2008, 40, 152–161. [Google Scholar] [CrossRef]
- Preem, J.K.; Truu, J.; Truu, M.; Mander, Ü.; Oopkaup, K.; Lõhmus, K.; Helmisaari, H.S.; Uri, V.; Zobel, M. Bacterial community structure and its relationship to soil physico-chemical characteristics in alder stands with different management histories. Ecol. Eng. 2012, 49, 10–17. [Google Scholar] [CrossRef]
- Bapiri, A.; Bååth, E.; Rousk, J. Drying-rewetting cycles affect fungal and bacterial growth differently in an arable soil. Microb. Ecol. 2010, 60, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Joa, J.H.; Moon, K.H.; Kim, S.C.; Moon, D.G.; Koh, S.W. Effect of Temperature Condition on Nitrogen Mineralization of Organic Matter and Soil Microbial Community Structure in non-Volcanic Ash Soil. Korean J. Soil Sci. Fertil. 2012, 45, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Altomare, C.; Tringovska, I. Beneficial Soil Microorganisms, an Ecological Alternative for Soil Fertility Management. In Genetics, Biofuels and Local Farming Systems. Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: Dordrecht, The Netherlands; Cham, Switzerland, 2011; pp. 161–214. [Google Scholar]
- Lim, S.U. Plant Growth and Nutrients. In Fertilizer; Ilsin: Seoul, Korea, 2005; pp. 38–45. [Google Scholar]
- Paz-González, A.; Vieira, S.R.; Taboada Castro, M.T. The effect of cultivation on the spatial variability of selected properties of an umbric horizon. Geoderma 2000, 37, 273–292. [Google Scholar] [CrossRef]
Cultivation Sites | Topography | Forest Physiognomy | |||||
---|---|---|---|---|---|---|---|
Slope | HASL a | Species of Tree | Average | Percentage | |||
TH b | DBH c | ||||||
° | Detection | m | m | cm | % | ||
A | 32 | Southeast | 920 | Broad-leaved | 21.5 | 31.0 | 80.0 |
Conifer | 36.0 | 56.7 | 20.0 | ||||
Total | 24.4 | 36.1 | 100 | ||||
B | 20 | Southwest | 615 | Broad-leaved | 22.8 | 14.8 | 35.7 |
Conifer | 19.0 | 13.0 | 64.3 | ||||
Total | 20.4 | 13.7 | 100 | ||||
C | 30 | Northeast | 387 | Broad-leaved | 14.7 | 12.8 | 81.8 |
Conifer | 31.5 | 29.6 | 18.2 | ||||
Total | 17.8 | 15.9 | 100 | ||||
D | 20 | North | 530 | Broad-leaved | 18.8 | 15.0 | 100 |
Conifer | - | - | - | ||||
Total | 18.8 | 15.0 | 100 | ||||
E | 27 | Southwest | 330 | Broad-leaved | 16.2 | 15.1 | 100 |
Conifer | - | - | - | ||||
Total | 16.2 | 15.1 | 100 | ||||
F | 35 | Southeast | 717 | Broad-leaved | 27.3 | 22.8 | 90.9 |
Conifer | 22.0 | 23.8 | 9.1 | ||||
Total | 26.8 | 22.9 | 100 | ||||
G | 25 | East | 712 | Broad-leaved | 17.1 | 21.6 | 40.0 |
Conifer | 27.0 | 35.6 | 60.0 | ||||
Total | 21.7 | 28.0 | 100 | ||||
H | 15 | North | 743 | Broad-leaved | 14.5 | 18.2 | 40.0 |
Conifer | 27.0 | 34.2 | 60.0 | ||||
Total | 22.0 | 27.8 | 100 | ||||
I | 5 | Southeast | 406 | Broad-leaved | 21.0 | 24.8 | 50.0 |
Conifer | 20.0 | 36.6 | 50.0 | ||||
Total | 20.5 | 30.7 | 100 |
Cultivation Sites | Soil Texture | pH | EC a | OM b | TN c | Avail. P2O5 d | Exchangeable Cation | CEC e | |||
---|---|---|---|---|---|---|---|---|---|---|---|
K | Ca | Mg | Na | ||||||||
(1:5) | dS m−1 | % | % | mg kg−1 | cmol+ kg−1 | cmol+ kg−1 | cmol+ kg−1 | cmol+ kg−1 | cmol+ kg−1 | ||
A | Sandy clay loam | 4.91 ± 0.07 ab | 0.03 ± 0.01 a | 17.2 ± 1.18 a | 0.69 ± 0.06 a | 18.1 ± 4.4 d | 0.18 ± 0.08 ab | 1.36 ± 0.74 cd | 0.35 ± 0.16 b | 0.09 ± 0.05 a | 36.6 ± 5.2 a |
B | Sandy loam | 5.03 ± 0.07 a | 0.02 ± 0.00 a | 3.8 ± 0.41 bc | 0.15 ± 0.01 c | 149.6 ± 9.0 a | 0.11 ± 0.01 b | 1.76 ± 0.15 d | 0.28 ± 0.04 b | 0.04 ± 0.00 a | 14.3 ± 2.2 b |
C | Sandy clay loam | 5.61 ± 0.14 a | 0.02 ± 0.00 a | 11.6 ± 0.56 d | 0.42 ± 0.01 d | 8.6 ± 0.3 d | 0.15 ± 0.04 ab | 4.70 ± 0.39 b | 1.06 ± 0.02 a | 0.08 ± 0.02 a | 30.9 ± 2.1 c |
D | Sandy loam | 5.61 ± 0.35 ab | 0.02 ± 0.00 a | 9.5 ± 1.00 bc | 0.32 ± 0.05 bc | 26.2 ± 8.9 d | 0.08 ± 0.01 b | 0.54 ± 0.27 cd | 0.11 ± 0.06 b | 0.06 ± 0.01 a | 27.1 ± 2.7 ab |
E | Sandy clay loam | 5.29 ± 0.05 ab | 0.05 ± 0.01 a | 12.7 ± 0.21 d | 0.48 ± 0.01 d | 74.1 ± 13.4 bc | 0.30 ± 0.04 a | 6.99 ± 0.53 d | 1.07 ± 0.37 b | 0.07 ± 0.02 a | 33.5 ± 0.4 c |
F | Sandy loam | 5.11 ± 0.04 ab | 0.03 ± 0.00 a | 8.5 ± 0.24 c | 0.34 ± 0.04 c | 105.8 ± 23.2 b | 0.19 ± 0.03 ab | 2.72 ± 0.77 c | 0.38 ± 0.11 b | 0.06 ± 0.01 a | 27.9 ± 0.9 b |
G | Sandy clay loam | 5.16 ± 0.07 ab | 0.02 ± 0.00 a | 8.7 ± 0.61 c | 0.34 ± 0.01 c | 60.5 ± 10.6 c | 0.17 ± 0.02 ab | 2.03 ± 0.19 cd | 0.39 ± 0.11 b | 0.05 ± 0.01 a | 27.6 ± 0.4 b |
H | Sandy loam | 5.06 ± 0.20 ab | 0.05 ± 0.00 a | 4.3 ± 0.88 b | 0.17 ± 0.04 b | 14.8 ± 3.8 d | 0.31 ± 0.01 a | 0.55 ± 0.16 a | 0.16 ± 0.03 a | 0.03 ± 0.01 a | 14.7 ± 2.2 ab |
I | Sandy loam | 4.73 ± 0.04 b | 0.02 ± 0.00 a | 8.7 ± 1.06 c | 0.34 ± 0.04 c | 23.2 ± 9.6 d | 0.11 ± 0.02 b | 0.10 ± 0.02 d | 0.05 ± 0.01 b | 0.06 ± 0.02 a | 26.0 ± 2.2 b |
Soil Factors | Marginal Test | Sequential Test | ||||
---|---|---|---|---|---|---|
p-Value | Proportion | p-Value | Proportion | Cumulative | ||
CEC | 0.0003 | 0.1410 | 0.0003 | 0.1410 | 0.1410 | |
OM | 0.0011 | 0.1227 | 0.0002 | 0.1089 | 0.2499 | |
TN | 0.0040 | 0.1095 | 0.0017 | 0.1026 | 0.3525 | |
P2O5 | 0.0425 | 0.0721 | 0.0269 | 0.0522 | 0.4047 | |
pH | 0.0627 | 0.0669 | 0.0297 | 0.0487 | 0.4535 | |
Mg | 0.0078 | 0.1025 | 0.3088 | 0.0290 | 0.4824 | |
K | 0.0522 | 0.0684 | 0.1213 | 0.0367 | 0.5191 | |
Na | 0.2844 | 0.0618 | 0.5460 | 0.0230 | 0.5421 | |
EC | 0.1731 | 0.0509 | 0.6749 | 0.0200 | 0.5620 | |
Ca | 0.2113 | 0.0945 | 0.6489 | 0.0208 | 0.5828 |
Soil Factors | Correlation Coefficient (r) | ||||
---|---|---|---|---|---|
Ace | Chao | Jackknife | Shannon | Invsimpson | |
pH | 0.225 (0.260) | 0.229 (0.251) | −0.188 (0.348) | 0.228 (0.253) | 0.122 (0.544) |
EC | −0.074 (0.714) | −0.236 (0.236) | −0.132 (0.512) | −0.234 (0.240) | 0.016 (0.938) |
OM | 0.459 * (0.016) | 0.380 * (0.050) | −0.115 (0.569) | 0.407 * (0.035) | −0.246 (0.216) |
TN | 0.425 * (0.027) | 0.371 (0.057) | −0.118 (0.557) | 0.391 * (0.043) | −0.166 (0.408) |
P2O5 | −0.343 (0.080) | 0.224 (0.262) | −0.129 (0.521) | 0.248 (0.211) | −0.544 * (0.003) |
K | 0.038 (0.849) | −0.250 (0.208) | −0.309 (0.116) | −0.264 (0.184) | 0.227 (0.254) |
Ca | 0.293 (0.138) | 0.260 (0.191) | −0.207 (0.299) | 0.258 (0.193) | 0.255 (0.200) |
Mg | 0.048 (0.812) | 0.252 (0.204) | −0.201 (0.315) | 0.241 (0.226) | 0.468 * (0.014) |
Na | 0.111 (0.583) | 0.361 (0.064) | 0.248 (0.213) | 0.366 (0.061) | 0.359 (0.066) |
CEC | −0.026 (0.899) | 0.434 * (0.024) | −0.052 (0.799) | 0.459 * (0.016) | −0.350 (0.074) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Kim, H.J.; Jeong, D.H.; Huh, J.H.; Jeon, K.S.; Um, Y. Correlation between Soil Bacterial Community Structure and Soil Properties in Cultivation Sites of 13-Year-Old Wild-Simulated Ginseng (Panax ginseng C.A. Meyer). Appl. Sci. 2021, 11, 937. https://doi.org/10.3390/app11030937
Kim K, Kim HJ, Jeong DH, Huh JH, Jeon KS, Um Y. Correlation between Soil Bacterial Community Structure and Soil Properties in Cultivation Sites of 13-Year-Old Wild-Simulated Ginseng (Panax ginseng C.A. Meyer). Applied Sciences. 2021; 11(3):937. https://doi.org/10.3390/app11030937
Chicago/Turabian StyleKim, Kiyoon, Hyun Jun Kim, Dae Hui Jeong, Jeong Hoon Huh, Kwon Seok Jeon, and Yurry Um. 2021. "Correlation between Soil Bacterial Community Structure and Soil Properties in Cultivation Sites of 13-Year-Old Wild-Simulated Ginseng (Panax ginseng C.A. Meyer)" Applied Sciences 11, no. 3: 937. https://doi.org/10.3390/app11030937
APA StyleKim, K., Kim, H. J., Jeong, D. H., Huh, J. H., Jeon, K. S., & Um, Y. (2021). Correlation between Soil Bacterial Community Structure and Soil Properties in Cultivation Sites of 13-Year-Old Wild-Simulated Ginseng (Panax ginseng C.A. Meyer). Applied Sciences, 11(3), 937. https://doi.org/10.3390/app11030937