Understanding the Origin and Mixing of Deep Fluids in Shallow Aquifers and Possible Implications for Crustal Deformation Studies: San Vittorino Plain, Central Apennines
Abstract
:1. Introduction
2. Geological and Hydrogeological Setting
2.1. Apennines Tectonics Summary
2.2. The San Vittorino Plain Structure
2.3. Hydrogeological Setting
3. Methods
3.1. Sampling and Analysis
3.2. Thermodynamic and Isotopic Calculations
3.3. Map Review and Cross-Section Construction
4. Results
4.1. Hydrogeochemical Results: Chemical-Physical Parameters, Major and Trace Elements, and H2O Stable Isotope Ratio
4.2. Gas Geochemical Results: Dissolved and Free Gases, Noble Gas, and Isotope Ratio
4.3. Deep Structural Interpretation
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edmunds, W.M.; Smedley, P.L. Residence time indicators in groundwater: The East Midlands Triassic sandstone aquifer. Appl. Geochem. 2000, 15, 737–752. [Google Scholar] [CrossRef]
- Goldscheider, N.; Mádl-Szőnyi, J.; Erőss, A.; Schill, E. Review: Thermal water resources in carbonate rock aquifers. Hydrogeol. J. 2010, 18, 1303–1318. [Google Scholar] [CrossRef] [Green Version]
- Skelton, A.; Liljedahl-Claesson, L.; Wästeby, N.; Andrén, M.; Stockmann, G.; Sturkell, E.; Mörth, C.M.; Stefansson, A.; Tollefsen, E.; Siegmund, H.; et al. Hydrochemical Changes Before and After Earthquakes Based on Long-Term Measurements of Multiple Parameters at Two Sites in Northern Iceland—A Review. J. Geophys. Res. Solid Earth 2019, 124, 2702–2720. [Google Scholar] [CrossRef]
- Singh, P.; Mukherjee, S. Chemical signature detection of groundwater and geothermal waters for evidence of crustal deformation along fault zones. J. Hydrol. 2020, 582, 124459. [Google Scholar] [CrossRef]
- Cardello, G.L.; Mancktelow, N.S. Veining and post-nappe transtensional faulting in the SW Helvetic Alps (Switzerland). Swiss J. Geosci. 2015, 108, 379–400. [Google Scholar] [CrossRef]
- Clemenzi, L.; Storti, F.; Balsamo, F.; Molli, G.; Ellam, R.; Muchez, P.; Swennen, R. Fluid pressure cycles, variations in permeability, and weakening mechanisms along low-angle normal faults: The Tellaro detachment, Italy. Geol. Soc. Am. Bull. 2015, 127, 1689–1710. [Google Scholar] [CrossRef]
- Agosta, F.; Kirschner, D.L. Fluid conduits in carbonate-hosted seismogenic normal faults of central Italy: Fluid conduits in seismogenic normal faults. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Cardello, G.L. The Rawil Depression: Its Structural History from Cretaceous to Neogene. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2013; p. 1 Band. [Google Scholar]
- Smeraglia, L.; Aldega, L.; Bernasconi, S.M.; Billi, A.; Boschi, C.; Caracausi, A.; Carminati, E.; Franchini, S.; Rizzo, A.L.; Rossetti, F.; et al. The role of trapped fluids during the development and deformation of a carbonate/shale intra-wedge tectonic mélange (Mt. Massico, Southern Apennines, Italy). J. Struct. Geol. 2020, 138, 104086. [Google Scholar] [CrossRef]
- Miller, S.A.; Nur, A. Permeability as a toggle switch in fluid-controlled crustal processes. Earth Planet. Sci. Lett. 2000, 183, 133–146. [Google Scholar] [CrossRef]
- Italiano, F.; Martelli, M.; Martinelli, G.; Nuccio, P.M. Geochemical evidence of melt intrusions along lithospheric faults of the Southern Apennines, Italy: Geodynamic and seismogenic implications. J. Geophys. Res. 2001, 105, 13569–13578. [Google Scholar] [CrossRef]
- Chiodini, G.; Cardellini, C.; Amato, A.; Boschi, E.; Caliro, S.; Frondini, F.; Ventura, G. Carbon dioxide Earth degassing and seismogenesis in central and southern Italy: Carbon dioxide earth degassing and seismogenesis. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Italiano, F.; Bonfanti, P.; Ditta, M.; Petrini, R.; Slejko, F. Helium and carbon isotopes in the dissolved gases of Friuli Region (NE Italy): Geochemical evidence of CO2 production and degassing over a seismically active area. Chem. Geol. 2009, 266, 76–85. [Google Scholar] [CrossRef]
- Doglioni, C.; Barba, S.; Carminati, E.; Riguzzi, F. Fault on–off versus coseismic fluids reaction. Geosci. Front. 2014, 5, 767–780. [Google Scholar] [CrossRef] [Green Version]
- Smeraglia, L.; Bernasconi, S.M.; Berra, F.; Billi, A.; Boschi, C.; Caracausi, A.; Carminati, E.; Castorina, F.; Doglioni, C.; Italiano, F.; et al. Crustal-scale fluid circulation and co-seismic shallow comb-veining along the longest normal fault of the central Apennines, Italy. Earth Planet. Sci. Lett. 2018, 498, 152–168. [Google Scholar] [CrossRef]
- Collettini, C.; Tesei, T.; Scuderi, M.M.; Carpenter, B.M.; Viti, C. Beyond Byerlee friction, weak faults and implications for slip behavior. Earth Planet. Sci. Lett. 2019, 519, 245–263. [Google Scholar] [CrossRef]
- Buttitta, D.; Caracausi, A.; Chiaraluce, L.; Favara, R.; Gasparro, M.; Sulli, A. Evidences of the role of seismicity on degassing of volatile through the crust. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Italiano, F.; Solecki, A.; Martinelli, G.; Wang, Y.; Zheng, G. New Applications in Gas Geochemistry. Geofluids 2020, 2020, 1–3. [Google Scholar] [CrossRef]
- Caracausi, A.; Italiano, F.; Martinelli, G.; Paonita, A.; Rizzo, A. Long-term geochemical monitoring and extensive/compressive phenomena: Case study of the Umbria Region (Central Apennines, Italy). Ann. Geophys. 2005, 48, 43–53. [Google Scholar]
- Italiano, F.; Caracausi, A.; Favara, R.; Innocenzi, P.; Martinelli, G. Geochemical monitoring of cold waters during seismicity: Implications for earthquake-induced modification in shallow aquifers. Terr. Atmos. Ocean. Sci. 2005, 16, 709. [Google Scholar] [CrossRef] [Green Version]
- Barberio, M.D.; Barbieri, M.; Billi, A.; Doglioni, C.; Petitta, M. Hydrogeochemical changes before and during the 2016 Amatrice-Norcia seismic sequence (central Italy). Sci. Rep. 2017, 7, 11735. [Google Scholar] [CrossRef]
- Boschetti, T.; Barbieri, M.; Barberio, M.D.; Billi, A.; Franchini, S.; Petitta, M. CO2 Inflow and Elements Desorption Prior to a Seismic Sequence, Amatrice-Norcia 2016, Italy. Geochem. Geophys. Geosyst. 2019, 20, 2303–2317. [Google Scholar] [CrossRef]
- Cappa, F.; Scuderi, M.M.; Collettini, C.; Guglielmi, Y.; Avouac, J.-P. Stabilization of fault slip by fluid injection in the laboratory and in situ. Sci. Adv. 2019, 5, eaau4065. [Google Scholar] [CrossRef] [Green Version]
- Hosono, T.; Masaki, Y. Post-seismic hydrochemical changes in regional groundwater flow systems in response to the 2016 Mw 7.0 Kumamoto earthquake. J. Hydrol. 2020, 580, 124340. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, H.; Wang, G. Groundwater trace elements change induced by M5.0 earthquake in Yunnan. J. Hydrol. 2020, 581, 124424. [Google Scholar] [CrossRef]
- Hartmann, J.; Levy, J.K. Hydrogeological and Gasgeochemical Earthquake Precursors? A Review for Application. Nat. Hazards 2005, 34, 279–304. [Google Scholar] [CrossRef]
- Uysal, I.T.; Feng, Y.; Zhao, J.; Isik, V.; Nuriel, P.; Golding, S.D. Hydrothermal CO2 degassing in seismically active zones during the late Quaternary. Chem. Geol. 2009, 265, 442–454. [Google Scholar] [CrossRef]
- Tesei, T.; Collettini, C.; Barchi, M.R.; Carpenter, B.M.; Di Stefano, G. Heterogeneous strength and fault zone complexity of carbonate-bearing thrusts with possible implications for seismicity. Earth Planet. Sci. Lett. 2014, 408, 307–318. [Google Scholar] [CrossRef]
- Scuderi, M.M.; Collettini, C. The role of fluid pressure in induced vs. triggered seismicity: Insights from rock deformation experiments on carbonates. Sci. Rep. 2016, 6, 24852. [Google Scholar] [CrossRef] [Green Version]
- Italiano, F.; Martinelli, G.; Plescia, P. CO2 Degassing over Seismic Areas: The Role of Mechanochemical Production at the Study Case of Central Apennines. Pure Appl. Geophys. 2008, 165, 75–94. [Google Scholar] [CrossRef]
- Giustini, F.; Blessing, M.; Brilli, M.; Lombardi, S.; Voltattorni, N.; Widory, D. Determining the origin of carbon dioxide and methane in the gaseous emissions of the San Vittorino plain (Central Italy) by means of stable isotopes and noble gas analysis. Appl. Geochem. 2013, 34, 90–101. [Google Scholar] [CrossRef]
- Caracausi, A.; Paternoster, M. Radiogenic helium degassing and rock fracturing: A case study of the southern Apennines active tectonic region. J. Geophys. Res. Solid Earth 2015, 120, 2200–2211. [Google Scholar] [CrossRef]
- Barbieri, M.; Boschetti, T.; Barberio, M.D.; Billi, A.; Franchini, S.; Iacumin, P.; Selmo, E.; Petitta, M. Tracing deep fluid source contribution to groundwater in an active seismic area (central Italy): A combined geothermometric and isotopic (δ13C) perspective. J. Hydrol. 2020, 582, 124495. [Google Scholar] [CrossRef]
- Carminati, E.; Doglioni, C. Alps vs. Apennines: The paradigm of a tectonically asymmetric Earth. Earth Sci. Rev. 2012, 112, 67–96. [Google Scholar] [CrossRef]
- Boni, C.; Bono, P.; Capelli, G. Schema Idrogeologico Dell’Italia Centrale. Mem. Soc. Geol. 1986, 35, 991–1012. [Google Scholar]
- Chiodini, G.; Cardellini, C.; Di Luccio, F.; Selva, J.; Frondini, F.; Caliro, S.; Rosiello, A.; Beddini, G.; Ventura, G. Correlation between tectonic CO2 Earth degassing and seismicity is revealed by a 10-year record in the Apennines, Italy. Sci. Adv. 2020, 6, eabc2938. [Google Scholar] [CrossRef]
- Madonia, P.; Cangemi, M.; Oliveri, Y.; Germani, C. Hydrogeochemical Characters of Karst Aquifers in Central Italy and Relationship with Neotectonics. Water 2020, 12, 1926. [Google Scholar] [CrossRef]
- Petitta, M.; Primavera, P.; Tuccimei, P.; Aravena, R. Interaction between deep and shallow groundwater systems in areas affected by Quaternary tectonics (Central Italy): A geochemical and isotope approach. Environ. Earth Sci. 2011, 63, 11–30. [Google Scholar] [CrossRef]
- Petitta, M. Idrogeologia della media valle del fiume velino e della piana di s. Vittorino (Rieti, Italia centrale) / hydrogeology of the middle valley of the velino river and of the s. Vittorino plain (Rieti, Central Italy). Ital. J. Eng. Geol. Environ. 2009, 157–181. [Google Scholar] [CrossRef]
- Centamore, E.; Nisio, S.; Rossi, D. The San Vittorino Sinkhole Plain: Relationships between bedrock structure, sinking processes, seismic events and hydrothermal springs. Ital. J. Geosci. 2009, 128, 629–639. [Google Scholar]
- Stoppa, F.; Cundari, A. A new Italian carbonatite occurrence at Cupaello (Rieti) and its genetic significance. Contrib. Mineral. Petrol. 1995, 122, 275–288. [Google Scholar] [CrossRef]
- Peccerillo, A. Plio-Quaternary Volcanism in Italy; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2005; Volume 365, ISBN 978-3-540-25885-8. [Google Scholar]
- Barbieri, M. Groundwater mixing in the discharge area of San Vittorino Plain (Central Italy): Geochemical characterization and implication for drinking uses. Environ. Earth. Sci. 2017, 76, 393. [Google Scholar] [CrossRef]
- Doglioni, C. A proposal for the kinematic modelling of W-dipping subductions—possible applications to the Tyrrhenian-Apennines system. Terra Nova 1991, 3, 423–434. [Google Scholar] [CrossRef]
- Patacca, E.; Scandone, P. Geology of the southern Apennines. Boll. Della Soc. Geol. Ital. 2007, 7, 75–119. [Google Scholar]
- Carminati, E.; Fabbi, S.; Santantonio, M. Slab bending, syn-subduction normal faulting, and out-of-sequence thrusting in the Central Apennines: Effects of slab bending in the Apennines. Tectonics 2014, 33, 530–551. [Google Scholar] [CrossRef]
- Centamore, E.; Nisio, S. Tettonica e sedimentazione (Lias-Pleistocene) nella media Valle del Salto (Rieti, Italia Centrale). Stud. Geol. Camerti 2002, 2, 53–70. [Google Scholar]
- Cardello, G.L.; Doglioni, C. From Mesozoic rifting to Apennine orogeny: The Gran Sasso range (Italy). Gondwana Res. 2015, 27, 1307–1334. [Google Scholar] [CrossRef]
- Bigi, S.; Costa Pisani, P. From a deformed Peri-Tethyan carbonate platform to a fold-and-thrust-belt: An example from the Central Apennines (Italy). J. Struct. Geol. 2005, 27, 523–539. [Google Scholar] [CrossRef]
- Deiana, G.; Pasqualini, L.; Salvucci, R.; Stroppa, P.; Tondi, E. Il sistema dei sovrascorrimenti dei Monti Reatini: Analisi geometrica e cinematica. Stud. Geol. Camerti 1995, 199–206. [Google Scholar]
- Chiarabba, C.; Jovane, L.; DiStefano, R. A new view of Italian seismicity using 20 years of instrumental recordings. Tectonophysics 2005, 395, 251–268. [Google Scholar] [CrossRef]
- D’Agostino, N. Complete seismic release of tectonic strain and earthquake recurrence in the Apennines (Italy). Geophys. Res. Lett. 2014, 41, 1155–1162. [Google Scholar] [CrossRef]
- Cavinato, G.P.; Celles, P.D. Extensional basins in the tectonically bimodal central Apennines fold-thrust belt, Italy: Response to corner flow above a subducting slab in retrograde motion. Geology 1999, 27, 955–958. [Google Scholar] [CrossRef]
- Centamore, E.; Nisio, S.; Rossi, D. Aspetti geologico-strutturali in relazione alla formazione della ‘sinkhole plain’ di S. Vittorino. In Proceedings of the State of the Art on the Study of Sinkhole Phenomena and Role of the National and Local Government in the Territory Administration, Rome, Italy, 20–21 May 2004. [Google Scholar]
- Carrara, C.; Brunamonte, F.; Ferreli, L.; Lorenzoni, P.; Margheriti, L.; Michetti, A.M.; Raglione, M.; Rosati, M.; Serva, L. I terrazzi della medio-bassa Valle del Fiume Velino. Stud. Geol. Camerti 1993, 1992, 97–102. [Google Scholar]
- Castellarin, A.; Colacicchi, R.; Praturlon, A.; Cantelli, C. The jurassic-lower pliocene history of the Ancona-Anzio Line (Central Italy). Mem. Della Soc. Geol. Ital. 1982, 24, 325–336. [Google Scholar]
- Butler, R.W.H.; Tavarnelli, E.; Grasso, M. Structural inheritance in mountain belts: An Alpine–Apennine perspective. J. Struct. Geol. 2006, 28, 1893–1908. [Google Scholar] [CrossRef]
- Pizzi, A.; Galadini, F. Pre-existing cross-structures and active fault segmentation in the northern-central Apennines (Italy). Tectonophysics 2009, 476, 304–319. [Google Scholar] [CrossRef]
- Dramis, F. Il ruolo dei sollevamenti tettonici a largo raggio nella genesi del rilievo appenninico. Stud. Geol. Camerti 1993, 1, 9–15. [Google Scholar]
- Faccenna, C.; Florindo, F.; Funiciello, R.; Lombardi, S. Tectonic setting and Sinkhole Features: Case histories from western Central Italy. In Neotectonics: Recent Advances. Quaternary Proceedings; Owen, L.A., Stewart, I., Vita-Finzi, C., Eds.; Quaternary Research Association: Cambridge, UK, 1993; Volume 3, pp. 47–56. [Google Scholar]
- Centamore, E.; Nisio, S. Effects of uplift and tilting in the Central-Northern Apennines (Italy). Quat. Int. 2003, 101–102, 93–101. [Google Scholar] [CrossRef]
- D’Agostino, N.; Jackson, J.A.; Dramis, F.; Funiciello, R. Interactions between mantle upwelling, drainage evolution and active normal faulting: An example from the central Apennines (Italy). Geophys. J. Int. 2001, 147, 475–497. [Google Scholar] [CrossRef]
- Fiorillo, F.; Petitta, M.; Preziosi, E.; Rusi, S.; Esposito, L.; Tallini, M. Long-term trend and fluctuations of karst spring discharge in a Mediterranean area (central-southern Italy). Environ. Earth Sci. 2015, 74, 153–172. [Google Scholar] [CrossRef]
- Boni, C.; Petitta, M. Sorgenti lineari e valutazione dell’infiltrazione efficace in alcuni bacini dell’Italia Centrale. Quad. Geol. Appl. 1994, 1, 99–113. [Google Scholar]
- Chiodini, G.; Cardellini, C.; Caliro, S.; Chiarabba, C.; Frondini, F. Advective heat transport associated with regional Earth degassing in central Apennine (Italy). Earth Planet. Sci. Lett. 2013, 373, 65–74. [Google Scholar] [CrossRef]
- Lombardi, S.; Annunziatellis, A.; Beaubien, S.E.; Ciotoli, G. Near-surface gas geochemistry techniques to assess and monitor CO2 geological sequestration sites. In Advances in the Geological Storage of Carbon Dioxide; Lombardi, S., Altunina, L.K., Beaubien, S.E., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2006; Volume 65, pp. 141–156. ISBN 978-1-4020-4469-4. [Google Scholar]
- Salvati, R.; Sasowsky, I.D. Development of collapse sinkholes in areas of groundwater discharge. J. Hydrol. 2002, 264, 1–11. [Google Scholar] [CrossRef]
- Annunziatellis, A.; Beaubien, S.E.; Ciotoli, G.; Lombardi, S.; Nisio, S.; Nolasco, F. Studio dei parametri geologici e geochimici per la comprensione dei meccanismi genetici degli sprofondamenti nella piana di S. Vittorino (Rieti). In Proceedings of the State of the Art on the Study of Sinkhole Phenomena and Role of the National and Local Government in the Territory Administration, Rome, Italy, 20–21 May 2004. [Google Scholar]
- Bridgewater, L.L.; Baird, R.B. Standard Methods for the Examination of Water and Wasterwater, 23rd ed.; American Public Health Association, American Water Works Association, Water Environment Federation, Eds.; American Public Health Association: Washington, DC, USA, 2017; ISBN 978-0-87553-287-5. [Google Scholar]
- Nigro, A.; Sappa, G.; Barbieri, M. Application of boron and tritium isotopes for tracing landfill contamination in groundwater. J. Geochem. Explor. 2017, 172, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Epstein, S.; Mayeda, T. Variation of O18 content of waters from natural sources. Geochim. Cosmochim. Acta 1953, 4, 213–224. [Google Scholar] [CrossRef]
- Capasso, G.; Favara, R.; Grassa, F.; Inguaggiato, S.; Longo, L. On-line technique for preparing and measuring stable carbon isotope of total dissolved inorganic carbon in water samples (d13CTDIC). Ann. Geophys. 2005, 48, 159–166. [Google Scholar]
- Caracausi, A.; Sulli, A. Outgassing of Mantle Volatiles in Compressional Tectonic Regime Away From Volcanism: The Role of Continental Delamination. Geochem. Geophys. Geosyst. 2019, 20, 2007–2020. [Google Scholar] [CrossRef]
- Capasso, G.; Inguaggiato, S. A simple method for the determination of dissolved gases in natural waters. An application to thermal waters from Vulcano Island. Appl. Geochem. 1998, 13, 631–642. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, (USGS). 2013. Available online: https://pubs.usgs.gov/tm/06/a43/ (accessed on 10 April 2020).
- Bethke, C. Geochemical and Biogeochemical Reaction Modeling, 2nd ed.; Oxford University Press: Cambridge, UK; New York, NY, USA, 2008; ISBN 978-0-521-87554-7. [Google Scholar]
- Chiodini, G.; Frondini, F.; Cardellini, C.; Parello, F.; Peruzzi, L. Rate of diffuse carbon dioxide Earth degassing estimated from carbon balance of regional aquifers: The case of central Apennine, Italy. J. Geophys. Res. 2000, 105, 8423–8434. [Google Scholar] [CrossRef]
- Plummer, L.N.; Prestemon, E.C.; Parkhurst, D.L. An interactive code (NETPATH) for modeling net geochemical reactions along a flow path, version 2.0. Water Resour. Investig. Rep. 1994, 94, 4169. [Google Scholar]
- Parkhurst, D.L.; Charlton, S.R. NetpathXL—An Excel Interface to the Program NETPATH; U.S. Geological Survey Techniques and Methods 6–A26; USGS: Reston, VA, USA, 2008.
- Di Luccio, F.; Chiodini, G.; Caliro, S.; Cardellini, C.; Convertito, V.; Pino, N.A.; Tolomei, C.; Ventura, G. Seismic signature of active intrusions in mountain chains. Sci. Adv. 2018, 4, e1701825. [Google Scholar] [CrossRef] [Green Version]
- Frondini, F.; Cardellini, C.; Caliro, S.; Beddini, G.; Rosiello, A.; Chiodini, G. Measuring and interpreting CO 2 fluxes at regional scale: The case of the Apennines, Italy. J. Geol. Soc. 2019, 176, 408–416. [Google Scholar] [CrossRef] [Green Version]
- Masi, U.; Tucci, P.; Azzaro, E. Chemiostratigrafia e petrografia della formazione dolomitica triassica di Antrodoco (Rieti, Lazio settentrionale). Geol. Romana 1995, 31, 307–318. [Google Scholar]
- OriginLab. Origin User Guide; OriginLab Corporation: Northampton, MA, USA, 2018. [Google Scholar]
- Capotorti, F.; Fumanti, F.; Mariotti, G. Carta geologica del settore compreso tra il M. Nuria, il M. Gabbia e l’alta valle del F. Velino (Appennino Centrale)—scala 1: 50000. Stud. Geol. Camerti 1996. Available online: http://193.204.8.201:8080/jspui/handle/1336/763 (accessed on 10 April 2020).
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Trans. AGU 1944, 25, 914. [Google Scholar] [CrossRef]
- Ozima, M.; Podosek, F.A. Noble Gas Geochemistry, 2nd ed.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2002; ISBN 978-0-521-80366-3. [Google Scholar]
- Defennu, L.; Lombardi, S.; Federici, C. An introductory note on statistical analysis of physio-chemical characteristics of natural waters. Application to some Central Apennines spring waters. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 1975, 59, 125–139. [Google Scholar]
- Governa, M.E.; Masciocco, L.; Riba, M.; Zuppi, G.M.; Lombardi, S. Karst and geothermal water circulation in the Central Apennines (Italy). In Isotope Techniques in the Study of the Hydrology of Fractured and Fissured Rocks; International Atomic Energy Agency: Vienna, Austria, 1989. [Google Scholar]
- Civita, M.V.; Fiorucci, A. The recharge-discharge process of the Peschiera spring system (central Italy). Aqua Mundi 2010, 1, 161–178. [Google Scholar]
- Rosen, M.R.; Binda, G.; Archer, C.; Pozzi, A.; Michetti, A.M.; Noble, P.J. Mechanisms of Earthquake-Induced Chemical and Fluid Transport to Carbonate Groundwater Springs After Earthquakes. Water Resour. Res. 2018, 54, 5225–5244. [Google Scholar] [CrossRef]
- Battistel, M.; Hurwitz, S.; Evans, W.; Barbieri, M. Multicomponent Geothermometry Applied to a Medium-low Enthalpy Carbonate-evaporite Geothermal Reservoir. Energy Procedia 2014, 59, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Marini, L.; Chiodini, G.; Cioni, R. New geothermometers for carbonate—evaporite geothermal reservoirs. Geothermics 1986, 15, 77–86. [Google Scholar] [CrossRef]
- Minissale, A.A.; Duchi, V. Geothermometry on fluids circulating in a carbonate reservoir in north-central Italy. J. Volcanol. Geotherm. Res. 1988, 35, 237–252. [Google Scholar] [CrossRef]
- Chiodini, G.; Cioni, R.; Guidi, M.; Marini, L. Chemical geothermometry and geobarometry in hydrothermal aqueous solutions: A theoretical investigation based on a mineral-solution equilibrium model. Geochim. Cosmochim. Acta 1991, 55, 2709–2727. [Google Scholar] [CrossRef]
- Chiodini, G.; Frondini, F.; Marini, L. Theoretical geothermometers and PCO2 indicators for aqueous solutions coming from hydrothermal systems of medium-low temperature hosted in carbonate-evaporite rocks. Application to the thermal springs of the Etruscan Swell, Italy. Appl. Geochem. 1995, 10, 337–346. [Google Scholar] [CrossRef]
- Sanjuan, B.; Millot, R.; Ásmundsson, R.; Brach, M.; Giroud, N. Use of two new Na/Li geothermometric relationships for geothermal fluids in volcanic environments. Chem. Geol. 2014, 389, 60–81. [Google Scholar] [CrossRef]
- Ford, D.; Williams, P.W. Karst Hydrogeology and Geomorphology; John Wiley & Sons: Chichester, UK; Hoboken, NJ, USA, 2007; ISBN 978-0-470-84996-5. [Google Scholar]
- Awaleh, M.O.; Boschetti, T.; Adaneh, A.E.; Daoud, M.A.; Ahmed, M.M.; Dabar, O.A.; Soubaneh, Y.D.; Kawalieh, A.D.; Kadieh, I.H. Hydrochemistry and multi-isotope study of the waters from Hanlé-Gaggadé grabens (Republic of Djibouti, East African Rift System): A low-enthalpy geothermal resource from a transboundary aquifer. Geothermics 2020, 86, 101805. [Google Scholar] [CrossRef]
- Blasco, M.; Gimeno, M.J.; Auqué, L.F. Low temperature geothermal systems in carbonate-evaporitic rocks: Mineral equilibria assumptions and geothermometrical calculations. Insights from the Arnedillo thermal waters (Spain). Sci. Total Environ. 2018, 615, 526–539. [Google Scholar] [CrossRef]
- Franchini, S.; Agostini, S.; Barberio, M.D.; Barbieri, M.; Billi, A.; Boschetti, T.; Pennisi, M.; Petitta, M. HydroQuakes, central Apennines, Italy: Towards a hydrogeochemical monitoring network for seismic precursors and the hydro-seismo-sensitivity of boron. J. Hydrol. 2020, 125754. [Google Scholar] [CrossRef]
- Collettini, C.; Cardellini, C.; Chiodini, G.; De Paola, N.; Holdsworth, R.E.; Smith, S.A.F. Fault weakening due to CO2 degassing in the Northern Apennines: Short- and long-term processes. Geol. Soc. Lond. Spec. Publ. 2008, 299, 175–194. [Google Scholar] [CrossRef]
- Trumpy, E.; Manzella, A. Geothopica and the interactive analysis and visualization of the updated Italian National Geothermal Database. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 28–37. [Google Scholar] [CrossRef]
- Giggenbach, W.F. Chemical Techniques in Geothermal Exploration. In D’Amore, F. Applications of Geochemistry in Geothermal Reservoir Development; UNITAR/UNDP Publication: Rome, Italy, 1991; pp. 119–142. [Google Scholar]
- Chatterjee, S.; Sarkar, A.; Deodhar, A.S.; Biswal, B.P.; Jaryal, A.; Mohokar, H.V.; Sinha, U.K.; Dash, A. Geochemical and isotope hydrological characterisation of geothermal resources at Godavari valley, India. Environ. Earth. Sci. 2017, 76, 97. [Google Scholar] [CrossRef]
- Hou, Y.; Shi, Z.; Mu, W. Fluid Geochemistry of Fault Zone Hydrothermal System in the Yidun-Litang Area, Eastern Tibetan Plateau Geothermal Belt. Geofluids 2018, 2018, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Shakeri, A.; Moore, F.; Kompani-Zare, M. Geochemistry of the thermal springs of Mount Taftan, southeastern Iran. J. Volcanol. Geotherm. Res. 2008, 178, 829–836. [Google Scholar] [CrossRef]
- Göb, S.; Loges, A.; Nolde, N.; Bau, M.; Jacob, D.E.; Markl, G. Major and trace element compositions (including REE) of mineral, thermal, mine and surface waters in SW Germany and implications for water–rock interaction. Appl. Geochem. 2013, 33, 127–152. [Google Scholar] [CrossRef]
- Reimann, C.; de Caritat, P. Chemical Elements in the Environment; Springer: Berlin/Heidelberg, Germany, 1998; ISBN 978-3-642-72018-5. [Google Scholar]
- Morgantini, N.; Frondini, F.; Cardellini, C. Natural trace elements baselines and dissolved loads in groundwater from carbonate aquifers of central Italy. Phys. Chem. Earth 2009, 34, 520–529. [Google Scholar] [CrossRef]
- Bencini, A. Considerazioni sulla distribuzione geochimica del cesio nelle acque termali toscane. Rend. Della Soc. Ital. Mineral. e Petrologia 1984, 39, 449–454. [Google Scholar]
- Boschetti, T.; Venturelli, G.; Toscani, L.; Barbieri, M.; Mucchino, C. The Bagni di Lucca thermal waters (Tuscany, Italy): An example of CaSO4 waters with high Na/Cl and low CaSO4 ratios. J. Hydrol. 2005, 307, 270–293. [Google Scholar] [CrossRef]
- Capecchiacci, F.; Tassi, F.; Vaselli, O.; Bicocchi, G.; Cabassi, J.; Giannini, L.; Nisi, B.; Chiocciora, G. A combined geochemical and isotopic study of the fluids discharged from the Montecatini thermal system (NW Tuscany, Italy). Appl. Geochem. 2015, 59, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Spadoni, M.; Brilli, M.; Giustini, F.; Petitta, M. Using GIS for modelling the impact of current climate trend on the recharge area of the S. Susanna spring (central Apennines, Italy). Hydrol. Process. 2010, 24, 50–64. [Google Scholar] [CrossRef]
- Minissale, A.; Vaselli, O. Karst springs as “natural” pluviometers: Constraints on the isotopic composition of rainfall in the Apennines of central Italy. Appl. Geochem. 2011, 26, 838–852. [Google Scholar] [CrossRef]
- Archer, C.; Noble, P.; Kreamer, D.; Piscopo, V.; Petitta, M.; Rosen, M.R.; Poulson, S.R.; Piovesan, G.; Mensing, S. Hydrochemical determination of source water contributions to Lake Lungo and Lake Ripasottile (central Italy). J. Limnol. 2016. [Google Scholar] [CrossRef]
- Gat, J.R.; Carmi, I. Effect of climate changes on the precipitation patterns and isotopic composition of water in a climate transition zone: Case of the Eastern Mediterranean Sea area. In The Influence of Climate Change and Climatic Variability on the Hydrologic Regime and Water Resources; International Association Hydrological Sciences Publication Vancouver: Wallingford, UK, 1987; Volume 168, pp. 513–523. [Google Scholar]
- Bono, P.; Gonfiantini, R.; Alessio, M.; Fiori, C.; D’Amelio, L. Stable isotopes (d18O, d2H) and tritium in precipitation: Results and comparison with groundwater perched aquifers of Central Italy. In Isotopic Composition of Precipitation in the Mediterranean Basin in Relation to Air Circulation Patterns and Climate; TECDOC Series; International Atomic Energy Agency: Vienna, Austria, 2005; Volume 1453, pp. 115–124. [Google Scholar]
- Gherardi, F.; Bono, P.; Fiori, C.; Tejeiro, M.D.; Gonfiantini, R. Modeling the altitude isotope effect in precipitations and comparison with the altitude effect in groundwater. In Proceedings of the International Symposium on Advances in Isotope Hydrology and its Role in Sustainable Water Resources Management (IHS-2007), Vienna, Austria, 21–25 May 2007; Volume 21, p. 269. [Google Scholar]
- Longinelli, A.; Selmo, E. Isotopic composition of precipitation in Italy: A first overall map. J. Hydrol. 2003, 270, 75–88. [Google Scholar] [CrossRef]
- Celico, P.; Gonfiantini, R.; Koizumi, M.; Mangano, F. Environmental isotope studies of limestone aquifers in central Italy. Isot. Hydrol. 1983, 6, 173–192. [Google Scholar]
- Boschetti, T.; Cifuentes, J.; Iacumin, P.; Selmo, E. Local Meteoric Water Line of Northern Chile (18° S–30° S): An Application of Error-in-Variables Regression to the Oxygen and Hydrogen Stable Isotope Ratio of Precipitation. Water 2019, 11, 791. [Google Scholar] [CrossRef] [Green Version]
- Zuppi, G.M.; Bortolami, G. Hydrogeology: A privileged field for environmental stable isotopes applications. Some Italian examples. Rend. Della Soc. Ital. Mineral. Petrologia 1982, 38, 1197–1212. [Google Scholar]
- Romano, E.; Preziosi, E. Precipitation pattern analysis in the Tiber River basin (central Italy) using standardized indices: Precipitation pattern analysis in the tiber river basin. Int. J. Climatol. 2013, 33, 1781–1792. [Google Scholar] [CrossRef]
- Burnard, P.; Bourlange, S.; Henry, P.; Geli, L.; Tryon, M.D.; Natal’in, B.; Sengör, A.M.C.; Özeren, M.S.; Çagatay, M.N. Constraints on fluid origins and migration velocities along the Marmara Main Fault (Sea of Marmara, Turkey) using helium isotopes. Earth Planet. Sci. Lett. 2012, 341–344, 68–78. [Google Scholar] [CrossRef]
- O’Nions, R.K.; Oxburgh, E.R. Helium, volatile fluxes and the development of continental crust. Earth Planet. Sci. Lett. 1988, 90, 331–347. [Google Scholar] [CrossRef]
- Caracausi, A.; Martelli, M.; Nuccio, P.M.; Paternoster, M.; Stuart, F.M. Active degassing of mantle-derived fluid: A geochemical study along the Vulture line, southern Apennines (Italy). J. Volcanol. Geotherm. Res. 2013, 253, 65–74. [Google Scholar] [CrossRef]
- Sano, Y.; Gamo, T.; Williams, S.N. Secular variations of helium and carbon isotopes at Galeras volcano, Colombia. J. Volcanol. Geotherm. Res. 1997, 77, 255–265. [Google Scholar] [CrossRef]
- Martelli, M.; Nuccio, P.M.; Stuart, F.M.; Di Liberto, V.; Ellam, R.M. Constraints on mantle source and interactions from He-Sr isotope variation in Italian Plio-Quaternary volcanism: Italian plio-quaternary volcanism. Geochem. Geophys. Geosyst. 2008, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Cardello, G.L.; Consorti, L.; Palladino, D.M.; Carminati, E.; Carlini, M.; Doglioni, C. Tectonically controlled carbonate-seated maar-diatreme volcanoes: The case of the Volsci Volcanic Field, central Italy. J. Geodyn. 2020, 139, 101763. [Google Scholar] [CrossRef]
- Ballentine, C.J.; Marty, B.; Lollar, B.S.; Cassidy, M. Neon isotopes constrain convection and volatile origin in the Earth’s mantle. Nature 2005, 433, 6. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.W. Noble Gas Isotope Geochemistry of Mid-Ocean Ridge and Ocean Island Basalts: Characterization of Mantle Source Reservoirs. Rev. Mineral. Geochem. 2002, 47, 247–317. [Google Scholar] [CrossRef]
- Sano, Y.; Marty, B. Origin of carbon in fumarolic gas from island arcs. Chem. Geol. 1995, 119, 265–274. [Google Scholar] [CrossRef]
- Sharp, Z. Principles of Stable Isotope Geochemistry, 2nd ed.; The University of New Mexico: Albuquerque, NM, USA, 2017. [Google Scholar] [CrossRef]
- Pistiner, J.S.; Henderson, G.M. Lithium-isotope fractionation during continental weathering processes. Earth Planet. Sci. Lett. 2003, 214, 327–339. [Google Scholar] [CrossRef]
- Teng, F.Z.; McDonough, W.F.; Rudnick, R.L.; Wing, B.A. Limited lithium isotopic fractionation during progressive metamorphic dehydration in metapelites: A case study from the Onawa contact aureole, Maine. Chem. Geol. 2007, 239, 1–12. [Google Scholar] [CrossRef]
- Mathurin, F.A.; Drake, H.; Tullborg, E.-L.; Berger, T.; Peltola, P.; Kalinowski, B.E.; Åström, M.E. High cesium concentrations in groundwater in the upper 1.2km of fractured crystalline rock—Influence of groundwater origin and secondary minerals. Geochim. Cosmochim. Acta 2014, 132, 187–213. [Google Scholar] [CrossRef]
Li | Rb | Cs | δ13Cext(g) | Na/Li | logP(CO2) | δD | δ18O | R/Ra | He/Ne | R/Ra | He/Ne | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ppb | ppb | ppb | ‰ (vs. V-PDB) | °C | ‰ (vs. V-SMOW) | ‰ (vs. V-SMOW) | Dissolved | Dissolved | Free | Free | ||
S1 | 16.46 | 4.09 | 1.23 | 6.38 × 10−1 | 125 | −0.95 | −60 | −9.7 | ||||
S1 | 12.50 | 3.17 | 0.90 | −2.26 × 100 | 86 | −1.00 | 0.11 | 28.98 | ||||
S2 | 22.73 | 5.18 | 1.69 | 7.86 × 10−1 | 144 | −0.69 | −61 | −9.8 | ||||
S2 | 21.20 | 4.83 | 1.38 | −1.76 × 100 | 127 | −0.64 | 0.11 | 38.56 | ||||
S3 | 5.60 | 2.36 | 0.17 | 94 | −1.34 | |||||||
S3 | 4.81 | 1.53 | 0.07 | −1.71 × 10−1 | 58 | −1.41 | 0.08 | 1.82 | ||||
S4 | 4.95 | 2.33 | 0.27 | −2.45 × 100 | 94 | −1.21 | −62 | −9.8 | ||||
S4 | 3.96 | 1.72 | 0.18 | −4.96 × 100 | 80 | −1.27 | 0.10 | 12.54 | ||||
S5 | 48.73 | 7.15 | 7.45 | 1.93 × 100 | 193 | −0.26 | −60 | −9.8 | ||||
S5 | 47.15 | 6.54 | 6.44 | −2.51 × 100 | 172 | −0.10 | 0.07 | 8.35 | 0.11 | 121.50 | ||
S6 | 2.81 | 1.53 | 0.24 | 69 | −1.18 | |||||||
S7 | 0.43 | 0.58 | 0.00 | −2.00 × 101 | 2 | −2.75 | −53 | −8.9 | ||||
S7 | 0.35 | 0.60 | 0.00 | −2.81 × 101 | −5 | −2.98 | ||||||
S8 | 9.32 | 2.61 | 1.10 | 112 | −1.44 | −61 | −9.8 | |||||
S9 | 1.88 | 1.38 | 0.07 | −3.37 × 100 | 52 | −0.92 | 0.12 | 9.12 | 0.17 | 20.57 | ||
S10 | 1.53 | 1.53 | 0.06 | 48 | −1.68 | −60 | −9.8 | |||||
S11 | 98.11 | 9.64 | 5.36 | 2.14 × 100 | 193 | 0.00 | −55 | −9 | ||||
S11 | 83.65 | 7.82 | 3.78 | 179 | −0.19 | 0.08 | 0.59 | |||||
S11 | 100.70 | 9.66 | 5.14 | 6.44 × 100 | 148 | −0.07 | 0.10 | 198.57 | ||||
S12 | 5.86 | 2.29 | 0.27 | 99 | −1.12 | |||||||
S13 | 68.46 | 7.82 | 2.02 | 160 | −0.21 | |||||||
S14 | 19.81 | 3.32 | 0.62 | −8.44 × 10−1 | 133 | −0.76 | −59 | −9.7 | ||||
S14 | 8.28 | 1.92 | 0.49 | −3.69 × 100 | 100 | −1.12 | 0.10 | 13.27 | 0.15 | 37.97 | ||
S15 | 105.30 | 10.45 | 5.08 | 167 | 0.02 | |||||||
S15 | 124.30 | 11.16 | 5.98 | 184 | 0.02 | −59 | −9.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barberio, M.D.; Gori, F.; Barbieri, M.; Boschetti, T.; Caracausi, A.; Cardello, G.L.; Petitta, M. Understanding the Origin and Mixing of Deep Fluids in Shallow Aquifers and Possible Implications for Crustal Deformation Studies: San Vittorino Plain, Central Apennines. Appl. Sci. 2021, 11, 1353. https://doi.org/10.3390/app11041353
Barberio MD, Gori F, Barbieri M, Boschetti T, Caracausi A, Cardello GL, Petitta M. Understanding the Origin and Mixing of Deep Fluids in Shallow Aquifers and Possible Implications for Crustal Deformation Studies: San Vittorino Plain, Central Apennines. Applied Sciences. 2021; 11(4):1353. https://doi.org/10.3390/app11041353
Chicago/Turabian StyleBarberio, Marino Domenico, Francesca Gori, Maurizio Barbieri, Tiziano Boschetti, Antonio Caracausi, Giovanni Luca Cardello, and Marco Petitta. 2021. "Understanding the Origin and Mixing of Deep Fluids in Shallow Aquifers and Possible Implications for Crustal Deformation Studies: San Vittorino Plain, Central Apennines" Applied Sciences 11, no. 4: 1353. https://doi.org/10.3390/app11041353
APA StyleBarberio, M. D., Gori, F., Barbieri, M., Boschetti, T., Caracausi, A., Cardello, G. L., & Petitta, M. (2021). Understanding the Origin and Mixing of Deep Fluids in Shallow Aquifers and Possible Implications for Crustal Deformation Studies: San Vittorino Plain, Central Apennines. Applied Sciences, 11(4), 1353. https://doi.org/10.3390/app11041353