Membrane Contactors for Maximizing Biomethane Recovery in Anaerobic Wastewater Treatments: Recent Efforts and Future Prospect
Abstract
:1. Introduction
2. Membrane Contactors for the Recovery of D-CH4 from Anaerobic Effluents
2.1. Comparison of MC with Conventional Gas–Liquid Separation Devices
2.2. Influensive Parameters of Hollow Fiber MCs for D-CH4 Recovery
3. Technical Challenges and Recent Efforts to Address Them
3.1. Membrane Wetting
3.2. Membrane Fouling
4. Net Energy Production in MCs
5. Future Directions
- The development of anti-wetting and anti-fouling membranes is an essential component of the utilization and application of membrane contactors. Membrane contactors without fouling and wetting resistances require frequent membrane cleaning and membrane replacements, which eventually lower the economic feasibility of the process. Thus far, many studies have been carried out by using commercially available MC membranes such as PP and PDMS membranes, and the membrane fouling was not the major focus in most of studies. Noticeably, the biofouling that occurred in the D-CH4 recovery process would be hard to tackle, as microorganisms in anaerobic effluents can even foul the surface of the hydrophilic layer at a prolonged operation [13]. In addition, the anti-wetting property of the membrane should be addressed properly, considering the realistic conditions, including the fouling effect. For example, the surface property of the membrane can be altered by the deposition of a fouling layer, although a hydrophobic membrane surface was successfully created. Accordingly, it is recommended to develop high-performance membranes possessing both anti-wetting and anti-fouling properties together.
- Switching lab-scale to large-scale testing is needed to acquire more reliable data. Both membrane and operation parameters should be optimized together to maximize the net energy production in large-scale MC operation. Especially, the membrane module should be effectively designed in such a way that both liquid and gas streams are uniformly distributed inside the module, since ineffective flow stream often limits the overall performance of large-scale hollow fiber module. It is worth noting that a success in a lab-scale test using a few pieces of lab-made hollow fibers cannot guarantee the success in a large-scale practical operation. The operation parameters that are effective in a large-scale system would also be different from those found in a lab-scale system.
- More rigorous economic analysis is required based on data from large-scale operations under realistic conditions to provide more convincing evidence to potential users. In such analysis, practical parameters that must be involved in a long-term operation at real conditions, such as any pretreatments required for membrane fouling control, periodic membrane cleaning, and membrane replacement, must be taken into account.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lofrano, G.; Brown, J. Wastewater management through the ages: A history of mankind. Sci. Total Environ. 2010, 408, 5254–5264. [Google Scholar] [CrossRef] [PubMed]
- Puyol, D.; Batstone, D.J.; Hülsen, T.; Astals, S.; Peces, M.; Krömer, J.O. Resource recovery from wastewater by biological technologies: Opportunities, challenges, and prospects. Front. Microbiol. 2017, 7, 2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, Y.J.; Chong, M.F.; Law, C.L.; Hassell, D. A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chem. Eng. J. 2009, 155, 1–18. [Google Scholar] [CrossRef]
- Cakir, F.; Stenstrom, M. Greenhouse gas production: A comparison between aerobic and anaerobic wastewater treatment technology. Water Res. 2005, 39, 4197–4203. [Google Scholar] [CrossRef] [PubMed]
- Noor, M.; Wandel, A.P.; Yusaf, T. Design and development of mild combustion burner. J. Mech. Eng. Sci. 2013, 5, 662–676. [Google Scholar] [CrossRef] [Green Version]
- Velasco, P.; Jegatheesan, V.; Othman, M. Recovery of dissolved methane from anaerobic membrane bioreactor using degassing membrane contactors. Front. Environ. Sci. 2018, 6, 151. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.-H.; Yin, H.; Dang, Z.; Liu, Y. Dissolved methane: A hurdle for anaerobic treatment of municipal wastewater. ACS Publ. 2014. [Google Scholar] [CrossRef]
- Crone, B.C.; Garland, J.L.; Sorial, G.A.; Vane, L.M. Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: A review. Water Res. 2016, 104, 520–531. [Google Scholar] [CrossRef]
- Souza, C.; Chernicharo, C.; Aquino, S. Quantification of dissolved methane in UASB reactors treating domestic wastewater under different operating conditions. Water Sci. Technol. 2011, 64, 2259–2264. [Google Scholar] [CrossRef]
- Kundu, S.; Zanganeh, J.; Moghtaderi, B. A review on understanding explosions from methane–air mixture. J. Loss. Prev. Process. Ind. 2016, 40, 507–523. [Google Scholar] [CrossRef]
- Cookney, J.; Cartmell, E.; Jefferson, B.; McAdam, E. Recovery of methane from anaerobic process effluent using poly-di-methyl-siloxane membrane contactors. Water Sci. Technol. 2012, 65, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Bandara, W.M.; Satoh, H.; Sasakawa, M.; Nakahara, Y.; Takahashi, M.; Okabe, S. Removal of residual dissolved methane gas in an upflow anaerobic sludge blanket reactor treating low-strength wastewater at low temperature with degassing membrane. Water Res. 2011, 45, 3533–3540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rongwong, W.; Lee, J.; Goh, K.; Karahan, H.E.; Bae, T.-H. Membrane-based technologies for post-treatment of anaerobic effluents. NPJ Clean Water 2018, 1, 1–11. [Google Scholar] [CrossRef]
- Mena, P.; Ferreira, A.; Teixeira, J.; Rocha, F. Effect of some solid properties on gas–liquid mass transfer in a bubble column. Chem. Eng. Process. Process Intensif. 2011, 50, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, A.; Rasmuson, Å.C. Selective desorption of carbon dioxide from sewage sludge for in situ methane enrichment—part I: Pilot—Plant experiments. Biotechnol. Bioeng. 2006, 95, 794–803. [Google Scholar] [CrossRef] [PubMed]
- Glória, R.; Motta, T.; Silva, P.; Costa, P.d.; Brandt, E.; Souza, C.; Chernicharo, C. Stripping and dissipation techniques for the removal of dissolved gases from anaerobic effluents. Braz. J. Chem. Eng. 2016, 33, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Glória, R.; Souza, C.; Chernicharo, C.; do Carmo, M.; Silva, P. Effectiveness of a desorption chamber for the removal of dissolved gases from anaerobic effluents. In Proceedings of the 13th IWA Specialised Conference on Small Water and Wastewater Systems, Athens, Greece, 14–16 October 2016; pp. 14–16. [Google Scholar]
- Brown, N.W. Methane Dissolved in Wastewater Exiting UASB Reactors: Concentration Measurement and Methods for Neutralisation. Master’s Thesis, Royal Institute of Technology, Stockholm, Sweden, 2006. [Google Scholar]
- Heile, S.; Chernicharo, C.; Brandt, E.; McAdam, E.J. Dissolved gas separation for engineered anaerobic wastewater systems. Sep. Purif. Technol. 2017, 189, 405–418. [Google Scholar] [CrossRef] [Green Version]
- Kvamsdal, H.M.; Jakobsen, J.P.; Hoff, K.A. Dynamic modeling and simulation of a CO2 absorber column for post-combustion CO2 capture. Chem. Eng. Process. Process Intensif. 2009, 48, 135–144. [Google Scholar] [CrossRef]
- Hanusch, F.; Rehfeldt, S.; Klein, H. Liquid Maldistribution in random--Packed columns: Experimental investigation of influencing factors. Chem. Eng. Technol. 2018, 41, 2241–2249. [Google Scholar] [CrossRef]
- Scherer, E.; Wichmann, K. Treatment of groundwater containing methane–Combination of the processing stages desorption and filtration. Acta Hydrochim. Hydrobiol. 2000, 28, 145–154. [Google Scholar] [CrossRef]
- Gabelman, A.; Hwang, S.-T. Hollow fiber membrane contactors. J. Membr. Sci. 1999, 159, 61–106. [Google Scholar] [CrossRef]
- Xu, Y.; Goh, K.; Wang, R.; Bae, T.-H. A review on polymer-based membranes for gas-liquid membrane contacting processes: Current challenges and future direction. Sep. Purif. Technol. 2019, 229, 115791. [Google Scholar] [CrossRef]
- Lee, K.-H.; Yeon, S.-H.; Sea, B.; Park, Y.-I. Hollow fiber membrane contactor hybrid system for CO2 recovery. Stud. Surf. Sci. Catal. 2004, 153, 423–428. [Google Scholar]
- Yu, C.-H.; Huang, C.-H.; Tan, C.-S. A review of CO2 capture by absorption and adsorption. Aerosol. Air Qual. Res. 2012, 12, 745–769. [Google Scholar] [CrossRef] [Green Version]
- Drioli, E.; Curcio, E.; Di Profio, G. State of the art and recent progresses in membrane contactors. Chem. Eng. Res. Des. 2005, 83, 223–233. [Google Scholar] [CrossRef]
- Yeon, S.-H.; Lee, K.-S.; Sea, B.; Park, Y.-I.; Lee, K.-H. Application of pilot-scale membrane contactor hybrid system for removal of carbon dioxide from flue gas. J. Membr. Sci. 2005, 257, 156–160. [Google Scholar] [CrossRef]
- Hoff, K.A.; Svendsen, H.F. CO2 absorption with membrane contactors vs. packed absorbers-Challenges and opportunities in post combustion capture and natural gas sweetening. Energy Proc. 2013, 37, 952–960. [Google Scholar] [CrossRef] [Green Version]
- Herzog, H.; Falk-Pedersen, O. The Kvaerner membrane contactor: Lessons from a case study in how to reduce capture costs. In Proceedings of the Fifth International Conference on Greenhouse Gas Control Technologies, Cairns, Australia, 13–16 August 2000. [Google Scholar]
- Duranceau, S.J.; Trupiano, V.M.; Lowenstine, M.; Whidden, S.; Hopp, J. Innovative hydrogen sulfide treatment methods: Moving beyond packed tower aeration. Fla. Water Resour. J. 2010, 7, 4–14. [Google Scholar]
- El-Behlil, M.A.; El-Gezawi Sead, M.; Sabri, A. Volatile organic chemicals removal from contaminated water using air stripping low profile sieve tray towers. In Proceedings of the Sixteenth International Water Technology Conference, Istanbul, Turkey, 7–10 May 2012. [Google Scholar]
- Muzenda, E. A critical discussion of volatile organic compounds recovery techniques. Int. J. Biol. Ecol. Environ. Sci. 2013, 2, 2277–4394. [Google Scholar]
- Mosse, W. Literature Review of Technology for the Recovery of Methane from Wastewater. Project 10TR1 Advanced Methane Extraction; Smart Water Fund: Docklands, Australia, 2013. [Google Scholar]
- Klaassen, R.; Feron, P.; van der Vaart, R.; Jansen, A. Industrial applications and opportunities for membrane contactors. In Membrane Science and Technology; Elsevier: Amsterdam, The Netherlands, 2003; Volume 8, pp. 125–145. [Google Scholar]
- Gugliuzza, A.; Basile, A. Membrane contactors: Fundamentals, membrane materials and key operations. In Handbook of Membrane Reactors; Elsevier: Amsterdam, The Netherlands, 2013; pp. 54–106. [Google Scholar]
- Henares, M.; Ferrero, P.; San-Valero, P.; Martinez-Soria, V.; Izquierdo, M. Performance of a polypropylene membrane contactor for the recovery of dissolved methane from anaerobic effluents: Mass transfer evaluation, long-term operation and cleaning strategies. J. Membr. Sci. 2018, 563, 926–937. [Google Scholar] [CrossRef]
- Henares, M.; Izquierdo, M.; Marzal, P.; Martínez-Soria, V. Demethanization of aqueous anaerobic effluents using a polydimethylsiloxane membrane module: Mass transfer, fouling and energy analysis. Sep. Purif. Technol. 2017, 186, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Cookney, J.; Mcleod, A.; Mathioudakis, V.; Ncube, P.; Soares, A.; Jefferson, B.; McAdam, E.J. Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contactors. J. Membr. Sci. 2016, 502, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Sethunga, G.S.M.D.P.; Karahan, H.E.; Wang, R.; Bae, T.-H. Wetting-and fouling-resistant hollow fiber membranes for dissolved methane recovery from anaerobic wastewater treatment effluents. J. Membr. Sci. 2021, 617, 118621. [Google Scholar] [CrossRef]
- Sanchis-Perucho, P.; Robles, Á.; Durán, F.; Ferrer, J.; Seco, A. PDMS membranes for feasible recovery of dissolved methane from AnMBR effluents. J. Membr. Sci. 2020, 604, 118070. [Google Scholar] [CrossRef]
- Rongwong, W.; Goh, K.; Bae, T.-H. Energy analysis and optimization of hollow fiber membrane contactors for recovery of dissolve methane from anaerobic membrane bioreactor effluent. J. Membr. Sci. 2018, 554, 184–194. [Google Scholar] [CrossRef]
- Rongwong, W.; Wongchitphimon, S.; Goh, K.; Wang, R.; Bae, T.-H. Transport properties of CO2 and CH4 in hollow fiber membrane contactor for the recovery of biogas from anaerobic membrane bioreactor effluent. J. Membr. Sci. 2017, 541, 62–72. [Google Scholar] [CrossRef]
- McLeod, A.; Jefferson, B.; McAdam, E.J. Toward gas-phase controlled mass transfer in micro-porous membrane contactors for recovery and concentration of dissolved methane in the gas phase. J. Membr. Sci. 2016, 510, 466–471. [Google Scholar] [CrossRef] [Green Version]
- Sethunga, G.S.M.D.P.; Lee, J.; Wang, R.; Bae, T.-H. Influences of operating parameters and membrane characteristics on the net energy production in dense, porous, and composite hollow fiber membrane contactors for dissolved biomethane recovery. J. Membr. Sci. 2020, 610, 118301. [Google Scholar] [CrossRef]
- Sethunga, G.S.M.D.P.; Lee, J.; Wang, R.; Bae, T.-H. Influence of membrane characteristics and operating parameters on transport properties of dissolved methane in a hollow fiber membrane contactor for biogas recovery from anaerobic effluents. J. Membr. Sci. 2019, 589, 117263. [Google Scholar] [CrossRef]
- Wickramasinghe, S.; Semmens, M.J.; Cussler, E. Mass transfer in various hollow fiber geometries. J. Membr. Sci. 1992, 69, 235–250. [Google Scholar] [CrossRef]
- Wang, K.L.; Cussler, E. Baffled membrane modules made with hollow fiber fabric. J. Membr. Sci. 1993, 85, 265–278. [Google Scholar] [CrossRef]
- Drioli, E.; Criscuoli, A.; Curcio, E. Membrane contactors: Fundamentals, Applications and Potentialities; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Henares, M.; Izquierdo, M.; Penya-Roja, J.; Martínez-Soria, V. Comparative study of degassing membrane modules for the removal of methane from Expanded Granular Sludge Bed anaerobic reactor effluent. Sep. Purif. Technol. 2016, 170, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, E.; Gómez-Díaz, D.; Navaza, J.; Sanjurjo, B. Continuous removal of carbon dioxide by absorption employing a bubble column. Chem. Eng. J. 2008, 137, 251–256. [Google Scholar] [CrossRef]
- Stanley, T.J.; Quinn, J.A. Phase-transfer catalysis in a membrane reactor. Chem. Eng. Sci. 1987, 42, 2313–2324. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, H.; Feron, P.; Liang, D. Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors. Sep. Purif. Technol. 2005, 46, 33–40. [Google Scholar] [CrossRef]
- Lu, J.-G.; Zheng, Y.-F.; Cheng, M.-D. Wetting mechanism in mass transfer process of hydrophobic membrane gas absorption. J. Membr. Sci. 2008, 308, 180–190. [Google Scholar] [CrossRef]
- Xu, Y.; Lin, Y.; Lee, M.; Malde, C.; Wang, R. Development of low mass-transfer-resistance fluorinated TiO2-SiO2/PVDF composite hollow fiber membrane used for biogas upgrading in gas-liquid membrane contactor. J. Membr. Sci. 2018, 552, 253–264. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R. Novel method for incorporating hydrophobic silica nanoparticles on polyetherimide hollow fiber membranes for CO2 absorption in a gas–liquid membrane contactor. J. Membr. Sci. 2014, 452, 379–389. [Google Scholar] [CrossRef]
- Lin, S.; Nejati, S.; Boo, C.; Hu, Y.; Osuji, C.O.; Elimelech, M. Omniphobic membrane for robust membrane distillation. Environ. Sci. Technol. Lett. 2014, 1, 443–447. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R. Fabrication of novel polyetherimide-fluorinated silica organic–inorganic composite hollow fiber membranes intended for membrane contactor application. J. Membr. Sci. 2013, 443, 170–180. [Google Scholar] [CrossRef]
- Wongchitphimon, S.; Rongwong, W.; Chuah, C.Y.; Wang, R.; Bae, T.-H. Polymer-fluorinated silica composite hollow fiber membranes for the recovery of biogas dissolved in anaerobic effluent. J. Membr. Sci. 2017, 540, 146–154. [Google Scholar] [CrossRef]
- Boo, C.; Lee, J.; Elimelech, M. Omniphobic polyvinylidene fluoride (PVDF) membrane for desalination of shale gas produced water by membrane distillation. Environ. Sci. Technol. 2016, 50, 12275–12282. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, R.; Yi, S.; Setiawan, L.; Hu, X.; Fane, A.G. Novel chemical surface modification to enhance hydrophobicity of polyamide-imide (PAI) hollow fiber membranes. J. Membr. Sci. 2011, 380, 241–250. [Google Scholar] [CrossRef]
- Wongchitphimon, S.; Wang, R.; Jiraratananon, R. Surface modification of polyvinylidene fluoride-co-hexafluoropropylene (PVDF–HFP) hollow fiber membrane for membrane gas absorption. J. Membr. Sci. 2011, 381, 183–191. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, Y.; Loh, C.H.; Wang, R. Development of robust fluorinated TiO2/PVDF composite hollow fiber membrane for CO2 capture in gas-liquid membrane contactor. Appl. Surf. Sci. 2018, 436, 670–681. [Google Scholar] [CrossRef]
- Razmjou, A.; Arifin, E.; Dong, G.; Mansouri, J.; Chen, V. Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. J. Membr. Sci. 2012, 415, 850–863. [Google Scholar] [CrossRef]
- Kujawa, J.; Kujawski, W.; Koter, S.; Rozicka, A.; Cerneaux, S.; Persin, M.; Larbot, A. Efficiency of grafting of Al2O3, TiO2 and ZrO2 powders by perfluoroalkylsilanes. Colloids Surf. A 2013, 420, 64–73. [Google Scholar] [CrossRef]
- Sethunga, G.S.M.D.P.; Rongwong, W.; Wang, R.; Bae, T.H. Optimization of hydrophobic modification parameters of microporous polyvinylidene fluoride hollow-fiber membrane for biogas recovery from anaerobic membrane bioreactor effluent. J. Membr. Sci. 2018, 548, 510–518. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R.; Zhang, L.Z.; Fane, A.G. Novel single-step hydrophobic modification of polymeric hollow fiber membranes containing imide groups: Its potential for membrane contactor application. Sep. Purif. Technol. 2012, 101, 76–84. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Wang, X.Z.; Cui, Z.L.; Drioli, E.; Wang, Z.H.; Zhao, S.F. Enhancing wetting resistance of poly (vinylidene fluoride) membranes for vacuum membrane distillation. Desalination 2017, 415, 58–66. [Google Scholar] [CrossRef]
- Sethunga, G.S.M.D.P.; Karahan, H.E.; Wang, R.; Bae, T.H. PDMS-coated porous PVDF hollow fiber membranes for efficient recovery of dissolved biomethane from anaerobic effluents. J. Membr. Sci. 2019, 584, 333–342. [Google Scholar] [CrossRef]
- Li, Y.F.; Wang, L.A.; Hu, X.Y.; Jin, P.R.; Song, X. Surface modification to produce superhydrophobic hollow fiber membrane contactor to avoid membrane wetting for biogas purification under pressurized conditions. Sep. Purif. Technol. 2018, 194, 222–230. [Google Scholar] [CrossRef]
- Rana, D.; Matsuura, T. Surface modifications for antifouling membranes. Chem. Rev. 2010, 110, 2448–2471. [Google Scholar] [CrossRef]
- Rongwong, W.; Goh, K.; Sethunga, G.S.M.D.P.; Bae, T.-H. Fouling formation in membrane contactors for methane recovery from anaerobic effluents. J. Membr. Sci. 2019, 573, 534–543. [Google Scholar] [CrossRef]
- An, Q.; Chen, J.-T.; De Guzman, M.; Hung, W.-S.; Lee, K.-R.; Lai, J.-Y. Multilayered poly (vinylidene fluoride) composite membranes with improved interfacial compatibility: Correlating pervaporation performance with free volume properties. Langmuir 2011, 27, 11062–11070. [Google Scholar] [CrossRef] [PubMed]
- Aburabie, J.; Peinemann, K.-V. Crosslinked poly (ether block amide) composite membranes for organic solvent nanofiltration applications. J. Membr. Sci. 2017, 523, 264–272. [Google Scholar] [CrossRef]
- Yang, Y.-F.; Li, Y.; Li, Q.-L.; Wan, L.-S.; Xu, Z.-K. Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling. J. Membr. Sci. 2010, 362, 255–264. [Google Scholar] [CrossRef]
- Fu, W.; Hua, L.; Zhang, W. Experimental and modeling assessment of the roles of hydrophobicity and zeta potential in chemically modified poly (ether sulfone) membrane fouling kinetics. Ind. Eng. Chem. Res. 2017, 56, 8580–8589. [Google Scholar] [CrossRef]
- Soteropulos, C.E.; Zurick, K.M.; Bernards, M.T.; Hunt, H.K. Tailoring the protein adsorption properties of whispering gallery mode optical biosensors. Langmuir 2012, 28, 15743–15750. [Google Scholar] [CrossRef]
- Li, J.-L.; Chen, B.-H. Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Sep. Purif. Technol. 2005, 41, 109–122. [Google Scholar] [CrossRef]
- Ding, Y.; Maruf, S.; Aghajani, M.; Greenberg, A.R. Surface patterning of polymeric membranes and its effect on antifouling characteristics. Sep. Sci. Technol. 2017, 52, 240–257. [Google Scholar] [CrossRef]
- Xie, M.; Luo, W.; Gray, S.R. Surface pattern by nanoimprint for membrane fouling mitigation: Design, performance and mechanisms. Water Res. 2017, 124, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Won, Y.-J.; Lee, J.; Choi, D.-C.; Chae, H.R.; Kim, I.; Lee, C.-H.; Kim, I.-C. Preparation and application of patterned membranes for wastewater treatment. Environ. Sci. Technol. 2012, 46, 11021–11027. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dutta, A.; Dong, Q.; Rollings-Scattergood, S.; Lee, J. Dissolved methane harvesting using omniphobic membranes for anaerobically treated wastewaters. Environ. Sci. Technol. Lett. 2019, 6, 228–234. [Google Scholar] [CrossRef]
- Li, X.; Dutta, A.; Saha, S.; Lee, H.-S.; Lee, J. Recovery of dissolved methane from anaerobically treated food waste leachate using solvent-based membrane contactor. Water Res. 2020, 175, 115693. [Google Scholar] [CrossRef] [PubMed]
- Varanasi, S.; Low, Z.-X.; Batchelor, W. Cellulose nanofibre composite membranes–biodegradable and recyclable UF membranes. Chem. Eng. J. 2015, 265, 138–146. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, Y.; Zhang, Y.; Wang, L.; Lv, L.; Ma, X.; Zeng, S.; Wang, H. Biodegradable functional chitosan membrane for enhancement of artemisinin purification. Carbohydr. Polym. 2020, 246, 116590. [Google Scholar] [CrossRef]
- Nivedita, S.; Joseph, S. Optimization of process parameters using response surface methodology for PCL based biodegradable composite membrane for water purification. Arab. J. Sci. Eng. 2020, 45, 7347–7360. [Google Scholar] [CrossRef]
Characteristics and Indicators | Aeration | Gas Stripping | Membrane Contactors |
---|---|---|---|
Pros | Simple High mass transfer area | Scalable Easy to operate | Modular, High mass transfer area Independent fluid flow Low footprint |
Cons | Scalability issue Low CH4 concentration in a gas outlet Difficult to control the quality of product gas | Low mass transfer area Flooding/foaming High gas/liquid flow ratio required | Lack of optimized membranes Fouling issues Membrane lifespan |
Energy requirement | High | High | Low |
Capital cost | Similar | ||
Operating cost | High | High | Low |
CH4 mass transfer coefficient per unit volume | Low | Low | High |
Overall CH4 mass transfer coefficient | High | High | Low |
Mass Transfer Coefficient | Parameter |
---|---|
Shell side mass transfer coefficient For and For and | |
Lumen side mass transfer coefficient for | |
Porous membranes | |
Dense membranes |
Membrane | RM a (s m−1) | ENet b (MJ m−3) | Long-Term Operation | Reference | |
---|---|---|---|---|---|
AnMBR | UASB | ||||
Modified PVDF (PHM-PVDF) | 4518.0 | 0.112 | Stable flux for 8 days | Wetting after 3 days | [46] |
PDMS-PVDF LM-5.0 | 6225.0 | 0.135 | Stable flux for 8 days | 25% flux drop within 10 days | [69] |
PDMS-co-P1 c | 6528.9 | 0.115 | - | Stable flux for 5 days, then 10% drop | [40] |
Commercial PP | 9512.6 | 0.102 | 10% flux drop within 8 days | 40% flux drop within 3 days | [40] |
Commercial PDMS | 12668 | 0.077 | - | 25% flux drop within 10 days | [40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Yun, K.H.; Sethunga, D.; Bae, T.-H. Membrane Contactors for Maximizing Biomethane Recovery in Anaerobic Wastewater Treatments: Recent Efforts and Future Prospect. Appl. Sci. 2021, 11, 1372. https://doi.org/10.3390/app11041372
Lee Y, Yun KH, Sethunga D, Bae T-H. Membrane Contactors for Maximizing Biomethane Recovery in Anaerobic Wastewater Treatments: Recent Efforts and Future Prospect. Applied Sciences. 2021; 11(4):1372. https://doi.org/10.3390/app11041372
Chicago/Turabian StyleLee, Yechan, Kang Hee Yun, Dilhara Sethunga, and Tae-Hyun Bae. 2021. "Membrane Contactors for Maximizing Biomethane Recovery in Anaerobic Wastewater Treatments: Recent Efforts and Future Prospect" Applied Sciences 11, no. 4: 1372. https://doi.org/10.3390/app11041372
APA StyleLee, Y., Yun, K. H., Sethunga, D., & Bae, T.-H. (2021). Membrane Contactors for Maximizing Biomethane Recovery in Anaerobic Wastewater Treatments: Recent Efforts and Future Prospect. Applied Sciences, 11(4), 1372. https://doi.org/10.3390/app11041372