Effects of Landscape Features on the Roadside Soil Heavy Metal Distribution in a Tropical Area in Southwest China
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Basic Approach
2.3. Statistical Analyses
3. Results
3.1. SQI Variations with Distances to Roads
3.2. Source Identification of Pollutants
3.3. Influencing Factors on Soil Properties Variability
3.3.1. Effects of Different Road Levels
3.3.2. Effects of Land Uses
3.3.3. Importance of Influencing Factors in Natural Soils
4. Discussion
4.1. Heavy Metal Variations Associated with Roads
4.2. Quantification of the Influencing Factors of Heavy Metals and Management Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mullerova, J.; Vitkova, M.; Vitek, O. The impacts of road and walking trails upon adjacent vegetation: Effects of road building materials on species composition in a nutrient poor environment. Sci. Total Environ. 2011, 409, 3839–3849. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, P.R.S.; Fernandes, G.J.T.; Moraes, E.P.; Moreira, L.F.F. Tropical climate effect on the toxic heavy metal pollutant course of road-deposited sediments. Environ. Pollut. 2019, 251, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Forman, R.T.T. Estimate of the area affected ecologically by the road system in the United States. Conserv. Biol. 2000, 14, 31–35. [Google Scholar] [CrossRef]
- Lee, M.A.; Davies, L.; Power, S.A. Effects of roads on adjacent plant community composition and ecosystem function: An example from three calcareous ecosystems. Environ. Pollut. 2012, 163, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Truscott, A.M.; Palmer, S.C.F.; McGowan, G.M.; Cape, J.N.; Smart, S. Vegetation composition of roadside verges in Scotland: The effects of nitrogen deposition, disturbance and management. Environ. Pollut. 2005, 136, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Hong, N.; Guan, Y.J.; Yang, B.; Zhong, J.; Zhu, P.F.; Ok, Y.S.; Hou, D.Y.; Tsang, D.C.W.; Guan, Y.T.; Liu, A. Quantitative source tracking of heavy metals contained in urban road deposited sediments. J. Hazard. Mater. 2020, 393, 8. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.L.; Cui, B.S.; Dong, S.K.; Yang, Z.F.; Yang, M.; Holt, K. Evaluating the influence of road networks on landscape and regional ecological risk-A case study in Lancang River Valley of Southwest China. Ecol. Eng. 2008, 34, 91–99. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.; Ding, Y. Assessing the influence of urban transportation infrastructure construction on haze pollution in China: A case study of Beijing-Tianjin-Hebei region. Environ. Impact Asses. 2021, 87, 106547. [Google Scholar] [CrossRef]
- Shi, G.T.; Chen, Z.L.; Xu, S.Y.; Zhang, J.; Wang, L.; Bi, C.J.; Teng, J.Y. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environ. Pollut. 2008, 156, 251–260. [Google Scholar] [CrossRef]
- Han, R.R.; Zhou, B.H.; Huang, Y.Y.; Lu, X.H.; Li, S.; Li, N. Bibliometric overview of research trends on heavy metal health risks and impacts in 1989-2018. J. Clean. Prod. 2020, 276, 10. [Google Scholar] [CrossRef]
- Alsanad, A.; Alolayan, M. Heavy metals in road-deposited sediments and pollution indices for different land activities. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100374. [Google Scholar] [CrossRef]
- Hilton, F.G.H.; Levinson, A. Factoring the environmental kuznets curve: Evidence from automotive lead emissions. J. Environ. Econ. Manag. 1998, 35, 126–141. [Google Scholar] [CrossRef] [Green Version]
- Turer, D.G.; Maynard, B.J. Heavy metal contamination in highway soils. Comparison of Corpus Christi, Texas and Cincinnati, Ohio shows organic matter is key to mobility. Clean Technol. Envir. 2003, 4, 235–245. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, D.; Xie, Q.; Chen, X. An approach to studying heavy metal pollution caused by modern city development in Nanjing, China. Environ. Geol. 1999, 38, 223–228. [Google Scholar] [CrossRef]
- Mikhailenko, A.V.; Ruban, D.A.; Ermolaev, V.A.; van Loon, A.J. Cadmium Pollution in the Tourism Environment: A Literature Review. Geosciences 2020, 10, 19. [Google Scholar] [CrossRef]
- Neher, D.A.; Asmussen, D.; Lovell, S.T. Roads in northern hardwood forests affect adjacent plant communities and soil chemistry in proportion to the maintained roadside area. Sci. Total Environ. 2013, 449, 320–327. [Google Scholar] [CrossRef]
- Wang, Z.L.; He, J.; Biao, Z.Y.; Wang, Z.S.; Wang, L.X.; Liu, H.M.; Lv, C.W.; Jiang, C. The distribution characteristics of heavy metals pollutants in soil-plant system along highway. J. Nanjing For. Univ. 2006, 30, 15–20. [Google Scholar]
- Zhu, J.J.; Cui, B.S.; Yang, Z.F.; Dong, S.K.; Yao, H.R. Spatial distribution and variability of heavy metals contents in the topsoil along roadside in the Longitudinal Range-Gorge Region in Yunnan Province. Acta Ecol. Sin. 2006, 26, 146–153. [Google Scholar]
- Wei, B.G.; Jiang, F.Q.; Li, X.M.; Mu, S.Y. Spatial distribution and contamination assessment of heavy metals in urban road dusts from Urumqi, NW China. Microchem. J. 2009, 93, 147–152. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, D.S. An approach to the characteristics of heavy metal phases as well as the capacity of desorption and adsorption in soils about heavy metal pollution formed by highway. Environ. Chem. 1998, 17, 564–568. [Google Scholar]
- Setala, H.; Viippola, V.; Rantalainen, A.L.; Pennanen, A.; Yli-Pelkonen, V. Does urban vegetation mitigate air pollution in northern conditions? Environ. Pollut. 2013, 183, 104–112. [Google Scholar] [CrossRef]
- Pataki, D.E.; Carreiro, M.M.; Cherrier, J.; Grulke, N.E.; Jennings, V.; Pincetl, S.; Pouyat, R.V.; Whitlow, T.H.; Zipperer, W.C. Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. Front. Ecol. Environ. 2011, 9, 27–36. [Google Scholar] [CrossRef]
- Carlosena, A.; Andrade, J.M.; Prada, D. Searching for heavy metals grouping roadside soils as a function of motorized traffic influence. Talanta 1998, 47, 753–767. [Google Scholar] [CrossRef]
- Abrahim, G.M.S.; Parker, R.J. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ. Monit. Assess. 2008, 136, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Carrero, J.A.; Arrizabalaga, I.; Bustamante, J.; Goienaga, N.; Arana, G.; Madariaga, J.M. Diagnosing the traffic impact on roadside soils through a multianalytical data analysis of the concentration profiles of traffic-related elements. Sci. Total Environ. 2013, 458, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Han, D.C.; Zhang, X.O.; Tomar, V.V.S.; Li, Q.; Wen, D.Z.; Liang, W.J. Effects of heavy metal pollution of highway origin on soil nematode guilds in North Shenyang, China. J. Environ. Sci. 2009, 21, 193–198. [Google Scholar] [CrossRef]
- Zhao, Q.H.; Liu, S.L.; Deng, L.; Yang, Z.F.; Dong, S.K.; Wang, C.; Zhang, Z.L. Spatio-temporal variation of heavy metals in fresh water after dam construction: A case study of the Manwan Reservoir, Lancang River. Environ. Monit. Assess. 2012, 184, 4253–4266. [Google Scholar] [CrossRef] [PubMed]
- Western, A.W.; Bloschl, G.; Grayson, R.B. Geostatistical characterisation of soil moisture patterns in the Tarrawarra a catchment. J. Hydrol. 1998, 205, 20–37. [Google Scholar] [CrossRef]
- Liu, S.L.; Guo, X.D.; Fu, B.J.; Lian, G.; Wang, J. The effect of environmental variables on soil characteristics at different scales in the transition zone of the Loess Plateau in China. Soil Use Manag. 2007, 23, 92–99. [Google Scholar] [CrossRef]
- Qiu, Y.; Fu, B.J.; Wang, J.; Chen, L.D. Spatial variability of soil moisture content and its relation to environmental indices in a semi-arid gully catchment of the Loess Plateau, China. J. Arid. Environ. 2001, 49, 723–750. [Google Scholar] [CrossRef] [Green Version]
- Bodaghabadi, M.B.; Salehi, M.H.; Martinez-Casasnovas, J.A.; Mohammadi, J.; Toomanian, N.; Borujeni, I.E. Using Canonical Correspondence Analysis (CCA) to identify the most important DEM attributes for digital soil mapping applications. Catena 2011, 86, 66–74. [Google Scholar] [CrossRef]
- Li, Z.Y.; Ma, Z.W.; van der Kuijp, T.J.; Yuan, Z.W.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef]
- Liu, E.F.; Yan, T.; Birch, G.; Zhu, Y.X. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Sci. Total Environ. 2014, 476, 522–531. [Google Scholar] [CrossRef]
- Wei, B.G.; Yang, L.S. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- MacKinnon, G.; MacKenzie, A.B.; Cook, G.T.; Pulford, I.D.; Duncan, H.J.; Scott, E.M. Spatial and temporal variations in Pb concentrations and isotopic composition in road dust, farmland soil and vegetation in proximity to roads since cessation of use of leaded petrol in the UK. Sci. Total Environ. 2011, 409, 5010–5019. [Google Scholar] [CrossRef] [Green Version]
- Salemaa, M.; Vanha-Majamaa, I.; Derome, J. Understorey vegetation along a heavy-metal pollution gradient in SW Finland. Environ. Pollut. 2001, 112, 339–350. [Google Scholar] [CrossRef]
- Steffens, J.T.; Wang, Y.J.; Zhang, K.M. Exploration of effects of a vegetation barrier on particle size distributions in a near-road environment. Atmos. Environ. 2012, 50, 120–128. [Google Scholar] [CrossRef]
- Wannaz, E.D.; Carreras, H.A.; Perez, C.A.; Pignata, M.L. Assessment of heavy metal accumulation in two species of Tillandsia in relation to atmospheric emission sources in Argentina. Sci. Total Environ. 2006, 361, 267–278. [Google Scholar] [CrossRef]
- Li, F.R.; Kang, L.F.; Gao, X.Q.; Hua, W.; Yang, F.W.; Hei, W.L. Traffic-related heavy metal accumulation in soils and plants in northwest China. Soil. Sediment. Contam. 2007, 16, 473–484. [Google Scholar] [CrossRef]
- Parkinson, J.A.; Allen, S.E. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Commun. Soil Sci. Plan. 1975, 6, 1–11. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. A rapid and accurate method for estimating organic carbon in soil. Proc. Indiana Acad. Sci. 1975, 84, 456–462. [Google Scholar]
- Adejuwon, J.O.; Ekanade, O. A comparison of soil properties under different landuse types in a part of the Nigerian cocoa belt. Catena 1988, 15, 319–331. [Google Scholar] [CrossRef]
- Fu, B.J.; Liu, S.L.; Lu, Y.H.; Chen, L.D.; Ma, K.M.; Liu, G.H. Comparing the soil quality changes of different land uses determined by two quantitative methods. J. Environ. Sci. 2003, 15, 167–172. [Google Scholar]
- Biometry, C.F. Canoco for Windows 4.0; Centre for Biometry: Wageningen, The Netherlands, 1998. [Google Scholar]
- Terbraak, C.J.F. Correspondence-analysis of Incidence and bundance data: Properties in terms of a unimodal response model. Biometrics 1985, 41, 859–873. [Google Scholar] [CrossRef]
- Falero, E.M. Data analysis in community and landscape ecology: R.H.G. Jongman, C.J.F. ter Braak and O.F.R. van Tongeren, Pudoc, Wageningen, The Netherlands, 1987 (ISBN 90-220-0908-4). 208 pp. Price Dfl. 85.00/$42.50. Landscape Urban. Plan. 1989, 17, 371–372. [Google Scholar] [CrossRef]
- Oksanen, J.; Minchin, P.R. Instability of ordination results under changes in input data order: Explanations and remedies. J. Veg. Sci. 1997, 8, 447–454. [Google Scholar] [CrossRef]
- Odeh, I.O.A.; Chittleborough, D.J.; McBratney, A.B. Elucidation of soil landform interrelationships by canonical ordination analysis. Geoderma 1991, 49, 1–32. [Google Scholar] [CrossRef]
- Liu, S.L.; Wang, C.; Yang, J.J.; Zhao, Q.H. Assessing the heavy metal contamination of soils in the water-level fluctuation zone upstream and downstream of the Manwan Dam, Lancang River. J. Soils Sediments 2014, 14, 1147–1157. [Google Scholar] [CrossRef] [Green Version]
- Ozaki, H.; Watanabe, I.; Kuno, K. As, Sb and Hg distribution and pollution sources in the roadside soil and dust around Kamikochi, Chubu Sangaku National Park, Japan. Geochem. J. 2004, 38, 473–484. [Google Scholar] [CrossRef]
- Sofowote, U.M.; Di Federico, L.M.; Healy, R.M.; Debosz, J.; Su, Y.S.; Wang, J.; Munoz, A. Heavy metals in the near-road environment: Results of semi-continuous monitoring of ambient particulate matter in the greater Toronto and Hamilton area. Atmos. Environ.-X 2019, 1, 11. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: London, UK, 1995; p. 889. [Google Scholar]
- Ouyang, J.F.; Liu, Z.R.; Zhang, L.; Wang, Y.; Zhou, L.M. Analysis of influencing factors of heavy metals pollution in farmland-rice system around a uranium tailings dam. Process. Saf. Environ. Protect. 2020, 139, 124–132. [Google Scholar] [CrossRef]
- Wahab, M.I.A.; Abd Razak, W.M.A.; Sahani, M.; Khan, M.F. Characteristics and health effect of heavy metals on non-exhaust road dusts in Kuala Lumpur. Sci. Total Environ. 2020, 703, 11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, X.; Zhu, Y.; Huang, Z.; Yu, Z.; Bai, Y.; Fan, G.; Wang, P.; Chen, H.; Su, Y.; et al. The influence of heavy metals in road dust on the surface runoff quality: Kinetic, isotherm, and sequential extraction investigations. Ecotox. Environ. Safe. 2019, 176, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Choi, J.Y.; Lee, J.; Lim, J.; Ra, K. Heavy metal pollution by road-deposited sediments and its contribution to total suspended solids in rainfall runoff from intensive industrial areas. Environ. Pollut. 2020, 265, 115028. [Google Scholar] [CrossRef]
- Liu, S.L.; Fu, B.J.; Lu, Y.H.; Chen, L.D. Effects of reforestation and deforestation on soil properties in humid mountainous areas: A case study in Wolong Nature Reserve, Sichuan province, China. Soil Use Manage. 2002, 18, 376–380. [Google Scholar] [CrossRef]
- Barber, R.G. Soil degradation in the tropical lowlands of Santa Cruz, Eastern Bolivia. Land Degrad. Rehabil. 1995, 6, 95–107. [Google Scholar] [CrossRef]
- Lin, Y.; Wu, M.; Fang, F.; Wu, J.; Ma, K. Characteristics and influencing factors of heavy metal pollution in surface dust from driving schools of Wuhu, China. Atmos. Pollut. Res. 2020. [Google Scholar] [CrossRef]
Variables | Factor 1 | Factor 2 |
---|---|---|
As | 0.863 | −0.089 |
Cd | 0.691 | 0.524 |
Cr | 0.055 | 0.896 |
Cu | 0.734 | 0.468 |
Pb | 0.822 | 0.309 |
Zn | 0.812 | 0.327 |
Ni | 0.395 | 0.823 |
Eigenvalue | 4.202 | 1.081 |
Percent of variance | 65.03 | 17.45 |
Cumulative percentage | 65.03 | 82.48 |
Possible source | Anthropogenic factor | Natural factor |
Road | pH | TK | TP | AK | TN | SOM | AP |
---|---|---|---|---|---|---|---|
Level I | 6.2 (0.45) | 14,360.6 (3257.3) | 298.5 (115.9) | 211.2 (167.7) | 1.8 (0.4) | 3.2 (0.8) | 10.8 (9.7) |
Level II | 5.9 (0.44) | 13,354.2 (2714.6) | 341.4 (93.4) | 113.1 (38.3) | 1.6 (0.4) | 2.9 (0.7) | 6.6 (3.6) |
Level III | 6.1 (0.27) | 17,875.9 (3013.3) | 277.1 (78.8) | 126.1 (30.2) | 1.4 (0.3) | 2.2 (0.5) | 19.5 (12.9) |
F value | 0.57 ns | 3.26 * | 0.43 ns | 1.33 ns | 2.52 * | 4.16 * | 2.26 ns |
Road | As | Zn | Pb | Cu | Cr | Cd | Ni |
---|---|---|---|---|---|---|---|
Level I | 5.3 (2.85) | 55.1 (12.94) | 27.9 (5.46) | 20.5 (4.95) | 77.5 (19.35) | 0.6 (0.26) | 29.4 (16.45) |
Level II | 4.5 (2.35) | 52.3 (7.54) | 26.3 (2.91) | 20.1 (3.25) | 76.2 (20.27) | 0.6 (0.14) | 33.5 (7.98) |
Level III | 3.7 (1.52) | 49.3 (8.97) | 25.5 (4.67) | 17.9 (2.72) | 80.4 (18.50) | 0.3 (0.05) | 27.0 (4.50) |
F value | 0.84 ns | 0.54 ns | 0.52 ns | 0.77 ns | 0.07 ns | 4.70 * | 0.16 ns |
Land Uses | pH | TN | SOM% | AP (mg/kg) | AK (mg/kg) | TP% | TK (%) |
---|---|---|---|---|---|---|---|
Grassland | 6.50 (0.60) | 1.46 (0.52) | 2.38 (0.86) | 13.25 (7.90) | 181.68 (63.85) | 0.03 (0.01) | 2.10 (0.41) |
Secondary forest | 6.12 (0.51) | 2.11 (0.43) | 3.81 (0.83) | 15.33 (15.47) | 184.46 (48.54) | 0.03 (0.01) | 1.48 (0.36) |
Shrub land | 6.26 (0.49) | 1.59 (0.21) | 2.61 (0.42) | 13.93 (7.60) | 173.10 (80.89) | 0.03 (0.01) | 2.02 (0.48) |
Dry land | 6.51 (0.31) | 1.63 (0.31) | 2.59 (0.57) | 10.55 (4.67) | 147.64 (67.48) | 0.02 (0.00) | 1.28 (0.31) |
Artificial forest | 5.53 (0.55) | 1.62 (0.36) | 3.18 (0.90) | 7.19 (7.68) | 167.74 (79.90) | 0.03 (0.01) | 1.52 (0.49) |
Paddy field | 6.09 (0.72) | 1.64 (0.71) | 2.52 (1.15) | 7.35 (1.67) | 116.63 (61.82) | 0.04 (0.01) | 1.54 (0.33) |
Natural forest | 6.27 (0.59) | 2.14 (0.70) | 4.08 (1.57) | 10.38 (5.97) | 160.93 (47.09) | 0.04 (0.03) | 1.47 (0.40) |
F value | 2.42 * | 1.68 ns | 2.46 * | 0.54 ns | 0.66 ns | 4.75 ** | 5.06 ** |
Land Uses | As | Cd | Cr | Cu | Pb | Zn | Ni |
---|---|---|---|---|---|---|---|
Grassland | 6.86 (4.57) | 0.50 (0.30) | 135.52 (67.37) | 28.35 (16.63) | 37.20 (19.13) | 73.47 (27.92) | 56.66 (70.91) |
Secondary forest | 5.48 (5.12) | 0.37 (0.13) | 66.27 (14.64) | 17.71 (7.57) | 29.06 (12.59) | 55.91 (22.52) | 22.04 (9.03) |
Shrub land | 6.31 (5.60) | 0.38 (0.12) | 87.95 (41.46) | 21.90 (4.93) | 35.57 (8.68) | 68.48 (11.36) | 30.89 (6.44) |
Dry land | 2.97 (2.67) | 0.30 (0.07) | 77.77 (21.16) | 21.04 (3.36) | 26.51 (5.95) | 48.26 (12.16) | 24.90 (6.27) |
Artificial forest | 3.36 (2.46) | 0.60 (0.65) | 82.93 (38.87) | 17.43 (6.54) | 23.55 (7.99) | 41.91 (20.57) | 31.95 (4.04) |
Paddy field | 5.85 (5.10) | 0.61 (0.32) | 80.34 (50.76) | 20.32 (8.14) | 29.37 (16.16) | 74.81 (14.04) | 36.86 (14.57) |
Natural forest | 6.15 (8.53) | 0.44 (0.22) | 86.80 (32.35) | 18.82 (11.23) | 25.68 (8.48) | 52.56 (20.56) | 25.96 (16.28) |
F value | 1.46 ns | 0.49 ns | 4.99 ** | 2.51 * | 2.76 * | 3.56 ** | 1.82 ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Liu, S.; Sun, Y.; Liu, Y.; Wang, F. Effects of Landscape Features on the Roadside Soil Heavy Metal Distribution in a Tropical Area in Southwest China. Appl. Sci. 2021, 11, 1408. https://doi.org/10.3390/app11041408
Dong Y, Liu S, Sun Y, Liu Y, Wang F. Effects of Landscape Features on the Roadside Soil Heavy Metal Distribution in a Tropical Area in Southwest China. Applied Sciences. 2021; 11(4):1408. https://doi.org/10.3390/app11041408
Chicago/Turabian StyleDong, Yuhong, Shiliang Liu, Yongxiu Sun, Yixuan Liu, and Fangfang Wang. 2021. "Effects of Landscape Features on the Roadside Soil Heavy Metal Distribution in a Tropical Area in Southwest China" Applied Sciences 11, no. 4: 1408. https://doi.org/10.3390/app11041408
APA StyleDong, Y., Liu, S., Sun, Y., Liu, Y., & Wang, F. (2021). Effects of Landscape Features on the Roadside Soil Heavy Metal Distribution in a Tropical Area in Southwest China. Applied Sciences, 11(4), 1408. https://doi.org/10.3390/app11041408