Emissions Reduction of Greenhouse Gases, Ozone Precursors, Aerosols and Acidifying Gases from Road Transportation during the COVID-19 Lockdown in Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Emission Estimation
2.3. Emissions Reduction vs. Air Quality Improvement
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Vehicle Type | Fuel | CO2 * | CH4 ** | N2O ** | CO * | NMVOC * | NOx * | BC * | PM2.5 * | PM10 * | NH3 * | SO2 + |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(Kg/m3) | (kg/TJ) | (Kg/m3) | (Kg/m3) | (Kg/m3) | (Kg/m3) | (Kg/m3) | (Kg/m3) | (Kg/m3) | (Kg/m3) | (kg/TJ) | ||
Personal cars | Gasoline | 2329 | 25.00 | 0.15 | 61.74 | 7.39 | 6.42 | 3 × 10−3 | 0.02 | 0.02 | 0.81 | 3.57 |
Gas Oil | 2678 | 3.90 | 0.07 | 2.81 | 0.59 | 10.95 | 0.53 | 0.93 | 0.93 | 0.05 | 2.91 | |
CNG | 1972 | 92.00 | 0.06 | 60.90 | 9.81 | 10.93 | - | - | - | 0.06 | - | |
Light commercial vehicles | Gasoline | 2329 | 25.00 | 0.14 | 111.94 | 10.72 | 9.72 | 7 × 10−4 | 0.01 | 0.01 | 0.49 | 3.57 |
Gas Oil | 2678 | 3.90 | 0.05 | 6.25 | 1.30 | 12.60 | 0.71 | 1.28 | 1.28 | 0.03 | 2.91 | |
CNG | 1972 | 92.00 | - | 4.10 | 0.14 | 9.35 | - | 0.01 | 0.01 | - | - | |
Heavy duty vehicles | Gas Oil | 2678 | 3.90 | 0.04 | 6.41 | 1.62 | 28.20 | 0.42 | 0.79 | 0.79 | 0.01 | 2.91 |
CNG | 1972 | 92.00 | - | 4.10 | 0.19 | 9.35 | - | 0.01 | 0.01 | - | - | |
Motorcycles | Gasoline | 2329 | 25.00 | 0.04 | 39.54 | 96.58 | 4.88 | 0.18 | 1.62 | 1.62 | 0.04 | 3.57 |
Departments | Gasoline | Diesel | ||
---|---|---|---|---|
2018 | 2020 | 2018 | 2020 | |
Amazonas | 1167 | 1808 | 1167 | 491 |
Antioquia | 154,614 | 195,364 | 154,614 | 206,015 |
Arauca | 2456 | 13,591 | 2456 | 11,024 |
San Andrés y Providencia | 1844 | 2397 | 1844 | 621 |
Atlántico | 73,855 | 46,499 | 73,855 | 53,498 |
Bogotá D.C. | 1,112,981 | 184,188 | 892,924 | 144,130 |
Bolívar | 118,597 | 45,119 | 124,428 | 73,072 |
Boyacá | 25,132 | 39,383 | 21,619 | 53,587 |
Caldas | 17,596 | 24,280 | 11,606 | 19,639 |
Caquetá | 8680 | 14,167 | 22,570 | 6439 |
Casanare | 7751 | 15,883 | 12,365 | 37,034 |
Cauca | 18,299 | 41,413 | 11,317 | 22,147 |
Cesar | 30,871 | 59,565 | 59,162 | 112,311 |
Choco | 6606 | 19,768 | 5091 | 15,555 |
Córdoba | 22,813 | 37,646 | 16,226 | 36,267 |
Cundinamarca | 74,089 | 88,491 | 74,260 | 165,606 |
Guainía | 956 | 3576 | 670 | 696 |
Guaviare | 2257 | 4270 | 1314 | 2293 |
Huila | 21,200 | 34,236 | 16,067 | 26,438 |
La Guajira | 3781 | 31,629 | 10,080 | 16,893 |
Magdalena | 268,517 | 22,459 | 320,757 | 18,756 |
Meta | 19,924 | 34,320 | 22,967 | 47,797 |
Nariño | 33,581 | 72,836 | 21,191 | 46,554 |
Norte de Santander | 14,744 | 68,938 | 21,411 | 67,054 |
Putumayo | 7304 | 17,838 | 6064 | 7558 |
Quindío | 11,741 | 16,622 | 7083 | 13,289 |
Risaralda | 20,316 | 29,554 | 14,635 | 22,211 |
Santander | 45,700 | 63,675 | 42,618 | 65,638 |
Sucre | 11,014 | 18,367 | 6122 | 14,021 |
Tolima | 28,855 | 38,160 | 26,876 | 60,583 |
Valle del Cauca | 106,590 | 143,532 | 84,913 | 163,125 |
Vaupés | 183 | 458 | 244 | 93 |
Vichada | 572 | 2877 | 636 | 1887 |
Pollutants | Measurement Principle Used | Equipment |
---|---|---|
CO | Infrared absorption spectrophotometry | CO Thermo Scientific 48i |
SO2 | Ultraviolet pulsed fluorescence | SO2 Thermo Scientific 43i |
NO2 | Chemiluminescence | NOx Ecotech 9841 |
O3 | Absorption spectrophotometry in the ultraviolet | O3 Ecotech 9841 |
Departments | 2018 | 2020 |
---|---|---|
Amazonas | 5.84 | 5.53 |
Antioquia | 774.15 | 1006.71 |
Arauca | 12.30 | 61.18 |
San Andrés y Providencia | 9.23 | 7.25 |
Atlántico | 369.79 | 251.56 |
Bogotá D.C. | 4983.45 | 814.97 |
Bolívar | 609.43 | 300.76 |
Boyacá | 116.43 | 235.23 |
Caldas | 72.06 | 109.14 |
Caquetá | 80.65 | 50.24 |
Casanare | 51.17 | 136.16 |
Cauca | 72.93 | 155.77 |
Cesar | 230.33 | 439.49 |
Choco | 29.02 | 87.70 |
Córdoba | 96.59 | 184.80 |
Cundinamarca | 371.42 | 649.57 |
Guainía | 4.02 | 10.19 |
Guaviare | 8.78 | 16.09 |
Huila | 92.40 | 150.54 |
La Guajira | 35.80 | 118.91 |
Magdalena | 1484.36 | 102.54 |
Meta | 107.91 | 207.93 |
Nariño | 134.96 | 294.31 |
Norte de Santander | 91.67 | 340.13 |
Putumayo | 33.25 | 61.79 |
Quindío | 46.31 | 74.30 |
Risaralda | 86.51 | 128.31 |
Santander | 220.57 | 324.08 |
Sucre | 42.05 | 80.33 |
Tolima | 139.18 | 251.11 |
Valle del Cauca | 475.65 | 771.13 |
Vaupés | 1.08 | 1.31 |
Vichada | 3.04 | 11.75 |
References
- Aylward, B.; Liang, W. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). WHO-China Jt. Mission Coronavirus Dis. 2020, 2019, 16–24. [Google Scholar]
- World Health Organization (WHO) Coronavirus disease 2019 Situation Report 51 11th March 2020. World Health Organ. 2020, 2019, 2633. [CrossRef] [Green Version]
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef] [Green Version]
- JHU Coronavirus Resources Center. Available online: https://coronavirus.jhu.edu/map.html (accessed on 25 April 2020).
- Wilder-Smith, A.; Freedman, D.O. Isolation, quarantine, social distancing and community containment: Pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak. J. Travel Med. 2020, 27, taaa020. [Google Scholar] [CrossRef] [PubMed]
- McKibbin, W.; Fernando, R. The Global Macroeconomic Impacts of COVID-19. Brook. Inst. 2020, 1–43. [Google Scholar] [CrossRef] [Green Version]
- May, B. World Economic Prospects Monthly. Econ. Outlook 2020, 44, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.P.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.G.; et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Chang. 2020, 10, 647–654. [Google Scholar] [CrossRef]
- Muhammad, S.; Long, X.; Salman, M. COVID-19 pandemic and environmental pollution: A blessing in disguise? Sci. Total Environ. 2020, 728, 138820. [Google Scholar] [CrossRef]
- IPCC Proposed outline of the special report in 2018 on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate cha. Ipcc Sr15 2018, 2, 17–20.
- Dantas, G.; Siciliano, B.; França, B.B.; da Silva, C.M.; Arbilla, G. The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020. [Google Scholar] [CrossRef]
- O’Reilly, K.M.; Auzenbergs, M.; Jafari, Y.; Liu, Y.; Flasche, S.; Lowe, R. Effective transmission across the globe: The role of climate in COVID-19 mitigation strategies. Lancet Planet. Health 2020, 4, e172. [Google Scholar] [CrossRef]
- Sharma, S.; Zhang, M.; Anshika; Gao, J.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ. 2020. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Chauhan, A. Impact of lockdown on air quality in India during COVID-19 pandemic. Air Qual. Atmos. Health 2020, 13, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Ly, B.T.; Kajii, Y.; Nguyen, T.Y.L.; Shoji, K.; Van, D.A.; Do, T.N.N.; Nghiem, T.D.; Sakamoto, Y. Characteristics of roadside volatile organic compounds in an urban area dominated by gasoline vehicles, a case study in Hanoi. Chemosphere 2020, 254, 126749. [Google Scholar] [CrossRef]
- Fameli, K.M.; Kotrikla, A.M.; Psanis, C.; Biskos, G.; Polydoropoulou, A. Estimation of the emissions by transport in two port cities of the northeastern Mediterranean, Greece. Environ. Pollut. 2020, 257, 113598. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Y.; Wang, Q.; Liu, C.; Zhi, Q.; Cao, J. Changes in air quality related to the control of coronavirus in China: Implications for traffic and industrial emissions. Sci. Total Environ. 2020, 731, 139133. [Google Scholar] [CrossRef]
- Tournadre, B.; Chelin, P.; Ray, M.; Cuesta, J.; Kutzner, R.D.; Landsheere, X.; Fortems-Cheiney, A.; Flaud, J.-M.; Hase, F.; Blumenstock, T.; et al. Atmospheric ammonia (NH3) over the Paris megacity: 9 years of total column observations from ground-based infrared remote sensing. Atmos. Meas. Tech. 2020, 13, 3923–3937. [Google Scholar] [CrossRef]
- Puliafito, S.E.; Bolaño-Ortiz, T.; Berná, L.; Pascual Flores, R. High resolution inventory of atmospheric emissions from livestock production, agriculture, and biomass burning sectors of Argentina. Atmos. Environ. 2020, 223, 117248. [Google Scholar] [CrossRef]
- Janssens-maenhout, G. Supplement of EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970–2012. Earth Syst. Sci. Data 2019, 11, 959–1002. [Google Scholar] [CrossRef] [Green Version]
- Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Dentener, F.; Muntean, M.; Pouliot, G.; Keating, T.; Zhang, Q.; Kurokawa, J.; Wankmüller, R.; et al. HTAP-v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos. Chem. Phys. 2015, 15, 11411–11432. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Zhang, Y.; Wang, Y.; Ou, Y.; Chen, D.; Pei, C.; Huang, Z.; Zhang, Z.; Liu, T.; Luo, S.; et al. Evaluating the effectiveness of multiple emission control measures on reducing volatile organic compounds in ambient air based on observational data: A case study during the 2010 Guangzhou Asian Games. Sci. Total Environ. 2020, 723, 138171. [Google Scholar] [CrossRef] [PubMed]
- Franco, J.F.; Pacheco, J.; Belalcázar, L.C.; Behrentz, E. Characterization and source identification of VOC species in Bogotá, Colombia. Atmósfera 2015, 28, 1–11. [Google Scholar] [CrossRef]
- Xue, R.; Wang, S.; Li, D.; Zou, Z.; Chan, K.L.; Valks, P.; Saiz-Lopez, A.; Zhou, B. Spatio-temporal variations in NO2 and SO2 over Shanghai and Chongming Eco-Island measured by Ozone Monitoring Instrument (OMI) during 2008–2017. J. Clean. Prod. 2020, 258, 120563. [Google Scholar] [CrossRef]
- Anjum, N. Good in The Worst: COVID-19 Restrictions and Ease in Global Air Pollution. Preprints 2020. [Google Scholar] [CrossRef]
- Kheirbek, I.; Haney, J.; Douglas, S.; Ito, K.; Matte, T. The contribution of motor vehicle emissions to ambient fine particulate matter public health impacts in New York City: A health burden assessment. Environ. Health A Glob. Access Sci. Source 2016, 15, 89. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Zou, Z.; Deng, C.; Huang, K.; Collett, J.L.; Lin, J.; Zhuang, G. The importance of vehicle emissions as a source of atmospheric ammonia in the megacity of Shanghai. Atmos. Chem. Phys. 2016, 16, 3577–3594. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zhou, J.L.; Yu, Y.; Mok, W.; Lee, C.F.C. Uncertainty in the Impact of the COVID-19 Pandemic on Air Quality in Hong Kong, China. Atmosphere 2020, 11, 914. [Google Scholar] [CrossRef]
- Musselwhite, C.; Avineri, E.; Susilo, Y. Editorial JTH 16 –The Coronavirus Disease COVID-19 and implications for transport and health. J. Transp. Health 2020, 16, 4–7. [Google Scholar] [CrossRef]
- Siciliano, B.; Dantas, G.; Cleyton, M.; Arbilla, G. Increased ozone levels during the COVID-19 lockdown: Analysis for the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 737, 139765. [Google Scholar] [CrossRef]
- Aloi, A.; Alonso, B.; Benavente, J.; Cordera, R.; Echániz, E.; González, F.; Ladisa, C.; Lezama-Romanelli, R.; López-Parra, Á.; Mazzei, V.; et al. Effects of the COVID-19 lockdown on urban mobility: Empirical evidence from the city of Santander (Spain). Sustainbility 2020, 12, 3870. [Google Scholar] [CrossRef]
- Mendez-Espinosa, J.F.; Rojas, N.Y.; Vargas, J.; Pachón, J.E.; Belalcazar, L.C.; Ramírez, O. Air quality variations in Northern South America during the COVID-19 lockdown. Sci. Total Environ. 2020, 749, 141621. [Google Scholar] [CrossRef] [PubMed]
- Arregocés, H.A.; Rojano, R.; Restrepo, G. Impact of lockdown on particulate matter concentrations in Colombia during the COVID-19 pandemic. Sci. Total Environ. 2020, 142874. [Google Scholar] [CrossRef] [PubMed]
- DANE Departamento Administrativo Nacional de Estadística (DANE). Available online: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacion (accessed on 18 January 2021).
- Economics, T. Colombia—Economic Forecasts—2020–2022 Outlook. Available online: https://tradingeconomics.com/colombia/forecast (accessed on 30 July 2020).
- Runt Runt—Registro Único Nacional de Tránsito. Available online: https://www.runt.com.co/runt-en-cifras/parque-automotor (accessed on 1 July 2020).
- IDEAM. Inventario Nacional y Departamental de Gases Efecto Invernadero. Tercera Comunicación Nacional de Cambio Climático; IDEAM: Bogota, Colombia, 2016; ISBN 9789588971254. [Google Scholar]
- Hao, H.; Wang, H.; Ouyang, M. Fuel conservation and GHG (Greenhouse gas) emissions mitigation scenarios for China’s passenger vehicle fleet. Energy 2011, 36, 6520–6528. [Google Scholar] [CrossRef]
- Bebkiewicz, K.; Chłopek, Z.; Lasocki, J.; Szczepański, K.; Zimakowska-Laskowska, M. Analysis of emission of greenhouse gases from road transport in Poland between 1990 and 2017. Atmosphere 2020, 11, 387. [Google Scholar] [CrossRef] [Green Version]
- Eggleston, H.S.; Miwa, K.; Srivastava, N.; Tanabe, K. IPCC 2006 IPCC Guidelines for National Greenhouse Inventories—A primer, Prepared by the National Greenhouse Gas Inventories Programme; Iges: Hayama, Japan, 2006; ISBN 4-88788-032-4. [Google Scholar]
- EMEP. EEA Report No 13/2019; EMEP: Geneva, Switzerland, 2019; ISBN 978-92-9480-098-5. [Google Scholar]
- FECOC Unidad de Planeación Minero Energética—UPME. Available online: http://www.upme.gov.co/Calculadora_Emisiones/aplicacion/calculadora.html (accessed on 26 July 2020).
- Puliafito, S.E.; Allende, D.G.; Castesana, P.S.; Ruggeri, M.F. High-resolution atmospheric emission inventory of the argentine energy sector. Comparison with edgar global emission database. Heliyon 2017, 3, 489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puliafito, S.E.; Allende, D.; Pinto, S.; Castesana, P. High resolution inventory of GHG emissions of the road transport sector in Argentina. Atmos. Environ. 2015, 101, 303–311. [Google Scholar] [CrossRef]
- Puliafito, S.E.; Bolaño-Ortiz, T.R.; Berná Peña, L.L.; Pascual-Flores, R.M. Dataset supporting the estimation and analysis of high spatial resolution inventories of atmospheric emissions from several sectors in Argentina. Data Br. 2020, 29, 105281. [Google Scholar] [CrossRef]
- Bolaño-Ortiz, T.R.; Puliafito, S.E.; Berná-Peña, L.L.; Pascual-Flores, R.M.; Urquiza, J.; Camargo-Caicedo, Y. Atmospheric Emission Changes and Their Economic Impacts during the COVID-19 Pandemic Lockdown in Argentina. Sustainability 2020, 12, 8661. [Google Scholar]
- Ministry of Mines and Energy Information System of Liquid Fuels of Colombia-SICOM. Available online: https://www.sicom.gov.co/index.php/boletin-estadistico (accessed on 18 January 2021).
- Ministry of Mines and Energy Information System of Liquid Fuels of Colombia-SICOM. Available online: https://www.sicom.gov.co/sicom/identificacionAction.do?method=pRedirectHttps (accessed on 1 July 2020).
- GMGNC Manager of the Natural Gas Market in Colombia-GMGNC. Available online: https://www.bmcbec.com.co/informes/informes-mensuales (accessed on 20 November 2020).
- UPME Plan de Acción Indicativo de Eficiencia Energética 2017–2022; Bogotá, 2016; pp.1–157. Available online: https://www1.upme.gov.co/DemandaEnergetica/MarcoNormatividad/PAI_PROURE_2017-2022.pdf (accessed on 20 July 2020).
- PROMIGAS Promigas S.A. E.S.P. Available online: http://www.promigas.com/Es/Noticias/Paginas/Revista-Magasin/Edicion-27/Pagina-69.aspx (accessed on 23 July 2020).
- Myhre, G.; Shindell, D.; Bréon, F.-M.F.-M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.-F.J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing: Supplementary Material. Clim. Chang. 2013. [Google Scholar] [CrossRef]
- Secretary of Environment Bogotá, Bogotá Air Quality Monitoring Network—RMCAB. Available online: http://201.245.192.252:81/home/map (accessed on 4 September 2020).
- OMI National Aeronautics and Space Administration. Available online: https://www.nasa.gov/mission_pages/aura/spacecraft/omi.html (accessed on 24 July 2020).
- Acker, J.G.; Leptoukh Eos, G. Trans. AGU. In Proceedings of the Online Analysis Enhances Use of NASA Earth Science Data; AGU: Washington, DC, USA, 2007; pp. 14–17. [Google Scholar]
- De Souza, C.D.R.; Silva, S.D.; Da Silva, M.A.V.; de D’Agosto, M.A.; Barboza, A.P. Inventory of conventional air pollutants emissions from road transportation for the state of Rio de Janeiro. Energy Policy 2013, 53, 125–135. [Google Scholar] [CrossRef]
- Undp Undp in Latin America and the Caribbean. Available online: https://www.latinamerica.undp.org/content/rblac/en/home/library/crisis_prevention_and_recovery/social-and-economic-impact-of-covid-19-and-policy-options-in-arg.html (accessed on 29 July 2020).
- DANE Statistics by Demography and Population in Colombia. Available online: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion (accessed on 19 January 2021).
- Nakada, L.Y.K.; Urban, R.C. COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Sci. Total Environ. 2020, 139087. [Google Scholar] [CrossRef] [PubMed]
- Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 726, 138540. [Google Scholar] [CrossRef] [PubMed]
- Silver, B.; He, X.; Arnold, S.R.; Spracklen, D.V. The impact of COVID-19 control measures on air quality in China. Environ. Res. Lett. 2020, 15. [Google Scholar] [CrossRef]
- Dinero Dinero. Available online: https://www.dinero.com/pais/articulo/consumo-de-gasolina-en-colombia-en-junio-de-2020/290275 (accessed on 24 July 2020).
- Liu, Z.; Ciais, P.; Deng, Z.; Lei, R.; Davis, S.J.; Feng, S.; Zheng, B.; Cui, D.; Dou, X.; Zhu, B.; et al. Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nat. Commun. 2020, 11, 5172. [Google Scholar] [CrossRef]
- He, L.; Zhang, S.; Hu, J.; Li, Z.; Zheng, X.; Cao, Y.; Xu, G.; Yan, M.; Wu, Y. On-road emission measurements of reactive nitrogen compounds from heavy-duty diesel trucks in China. Environ. Pollut. 2020, 262, 114280. [Google Scholar] [CrossRef]
- Xu, K.; Cui, K.; Young, L.H.; Wang, Y.F.; Hsieh, Y.K.; Wan, S.; Zhang, J. Air quality index, indicatory air pollutants and impact of covid-19 event on the air quality near central china. Aerosol Air Qual. Res. 2020, 20, 1204–1221. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, A.; Singh, R.P. Decline in PM2.5 concentrations over major cities around the world associated with COVID-19. Environ. Res. 2020, 187, 109634. [Google Scholar] [CrossRef]
- de Miranda, R.M.; Perez-Martinez, P.J.; de Fatima Andrade, M.; Ribeiro, F.N.D. Relationship between black carbon (BC) and heavy traffic in São Paulo, Brazil. Transp. Res. Part D Transp. Environ. 2019, 68, 84–98. [Google Scholar] [CrossRef]
- Chen, W.T.; Lee, Y.H.; Adams, P.J.; Nenes, A.; Seinfeld, J.H. Will black carbon mitigation dampen aerosol indirect forcing? Geophys. Res. Lett. 2010, 37, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Resmi, C.T.; Nishanth, T.; Satheesh Kumar, M.K.; Manoj, M.G.; Balachandramohan, M.; Valsaraj, K.T. Air quality improvement during triple-lockdown in the coastal city of Kannur, Kerala to combat Covid-19 transmission. PeerJ 2020, 8, e9642. [Google Scholar] [CrossRef] [PubMed]
- De Fatima, M.; Kumar, P.; Dias, E.; Freitas, D.; Yuri, R.; Martins, J.; Martins, L.D.; Nogueira, T.; Perez-martinez, P.; Maura, R.; et al. ~ o Paulo: Evolution over the last 30 Air quality in the megacity of S a years and future perspectives. Atmos. Environ. 2017, 159, 66–82. [Google Scholar] [CrossRef] [Green Version]
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodriguez, J.J.D.; Calatayud, V. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 2020, 735, 139542. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Jacob, D.J.; Liao, H.; Shen, L.; Zhang, Q.; Bates, K.H. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc. Natl. Acad. Sci. USA 2019, 116, 422–427. [Google Scholar] [CrossRef] [Green Version]
- Wynes, S.; Nicholas, K.A. The climate mitigation gap: Education and government recommendations miss the most effective individual actions. Environ. Res. Lett. 2017, 12, 074024. [Google Scholar] [CrossRef] [Green Version]
- Andrade-Castañeda, H.J.; Arteaga-Céspedes, C.C.; Segura-Madrigal, M.A. Emisión de gases de efecto invernadero por uso de combustibles fósiles en Ibagué, Tolima (Colombia). Corpoica Cienc. y Tecnol. Agropecu. 2017, 18, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Chester, M.; Pincetl, S.; Elizabeth, Z.; Eisenstein, W.; Matute, J. Infrastructure and automobile shifts: Positioning transit to reduce life-cycle environmental impacts for urban sustainability goals. Environ. Res. Lett. 2013, 8. [Google Scholar] [CrossRef]
- Anderson, R.M.; Heesterbeek, H.; Klinkenberg, D.; Hollingsworth, T.D. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet 2020, 395, 931–934. [Google Scholar] [CrossRef]
- Goscé, L.; Johansson, A. Analysing the link between public transport use and airborne transmission: Mobility and contagion in the London underground. Environ. Health 2018, 17, 84. [Google Scholar] [CrossRef] [Green Version]
- Filippini, T.; Rothman, K.J.; Goffi, A.; Ferrari, F.; Maffeis, G.; Orsini, N.; Vinceti, M. Satellite-detected tropospheric nitrogen dioxide and spread of SARS-CoV-2 infection in Northern Italy. Sci. Total Environ. 2020, 739, 140278. [Google Scholar] [CrossRef]
- Saha, B.; Debnath, A.; Saha, B. Analysis and finding the correlation of air quality parameters on the spread and deceased case of COVID-19 patients in India 2020. 2020, Research Square. Available online: https://assets.researchsquare.com/files/rs-34647/v1/d82c5de9-56a1-435b-a1e4-6ca206b8838f.pdf (accessed on 18 January 2021).
- Bolaño-Ortiz, T.R.; Camargo-Caicedo, Y.; Puliafito, S.E.; Ruggeri, M.F.; Bolaño-Diaz, S.; Pascual-Flores, R.; Saturno, J.; Ibarra-Espinosa, S.; Mayol-Bracero, O.L.; Torres-Delgado, E.; et al. Spread of SARS-CoV-2 through Latin America and the Caribbean region: A look from its economic conditions, climate and air pollution indicators. Environ. Res. 2020, 191, 109938. [Google Scholar] [CrossRef] [PubMed]
- Bolaño-Ortiz, T.R.; Pascual-Flores, R.M.; Puliafito, S.E.; Camargo-Caicedo, Y.; Berná-Peña, L.L.; Ruggeri, M.F.; Lopez-Noreña, A.I.; Tames, M.F.; Cereceda-Balic, F. Spread of COVID-19, Meteorological Conditions and Air Quality in the City of Buenos Aires, Argentina: Two Facets Observed during Its Pandemic Lockdown. Atmosphere 2020, 11, 1045. [Google Scholar] [CrossRef]
- Bashir, M.F.; Bilal, B.M.A.; Komal, B. Correlation between environmental pollution indicators and COVID-19 pandemic: A brief study in Californian context. Environ. Res. 2020, 109652. [Google Scholar] [CrossRef]
- Travaglio, M.; Popovic, R.; Yu, Y.; Leal, N.; Martins, L.M. Links between air pollution and COVID-19 in England. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Ogen, Y. Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Sci. Total Environ. 2020, 726, 138605. [Google Scholar] [CrossRef]
- Mankia, K.; Di Matteo, A.; Emery, P. Prevention and cure: The major unmet needs in the management of rheumatoid arthritis. J. Autoimmun. 2020, 110, 102399. [Google Scholar] [CrossRef]
- Brianti, M.; Magnani, M.; Menegatti, M. Optimal choice of prevention and cure under uncertainty on disease effect and cure effectiveness. Res. Econ. 2018, 72, 327–342. [Google Scholar] [CrossRef]
- EMEP EMEP/EEA air pollutant emission inventory guidebook—2016—European Environment Agency. EEA Reports 2016. [CrossRef]
Fuel | Consumption (%) | ||||
---|---|---|---|---|---|
Cars | Cargo | Public Transport | Motorcycles | Others | |
Gasoline | 77 | - | - | 22 | 1 |
Diesel oil | 18 | 53 | 26 | - | 3 |
CNG | 91 | 7 | 2 | - | - |
Air Pollutant | Mean Concentration 2018 (µg.m−3) | Mean Concentration 2020 (µg.m−3) | Variation of Mean Concentrations (%) from 2018 to 2020 | ||||||
---|---|---|---|---|---|---|---|---|---|
Apr | May | Jun | Apr | May | Jun | Apr | May | Jun | |
CO | 1408.75 ± 363.64 | 1269.63 ± 304.62 | 1074.67 ± 396.98 | 551.55 ± 276.74 | 787.13 ± 301.38 | 920.46 ± 422.75 | −60.85 | −38.18 | −13.8 |
SO2 | 3.90 ± 2.00 | 3.41 ± 1.26 | 4.50 ± 1.50 | 2.83 ± 1.19 | 3.30 ± 2.06 | 4.13 ± 2.15 | −27.39 | −16.57 | −8.22 |
NO2 | 56.10 ± 12.20 | 44.70 ± 7.82 | 46.60 ± 7.46 | 22.10 ± 9.75 | 27.80 ± 14.46 | 29.30 ± 12.59 | −60.6 | −37.81 | −37.12 |
O3 | 14.66 ± 6.88 | 10.28 ± 3.95 | 13.06 ± 6.75 | 37.53 ± 13.61 | 21.21 ± 7.07 | 18.16 ± 7.43 | 60.92 | 106.32 | 27.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camargo-Caicedo, Y.; Mantilla-Romo, L.C.; Bolaño-Ortiz, T.R. Emissions Reduction of Greenhouse Gases, Ozone Precursors, Aerosols and Acidifying Gases from Road Transportation during the COVID-19 Lockdown in Colombia. Appl. Sci. 2021, 11, 1458. https://doi.org/10.3390/app11041458
Camargo-Caicedo Y, Mantilla-Romo LC, Bolaño-Ortiz TR. Emissions Reduction of Greenhouse Gases, Ozone Precursors, Aerosols and Acidifying Gases from Road Transportation during the COVID-19 Lockdown in Colombia. Applied Sciences. 2021; 11(4):1458. https://doi.org/10.3390/app11041458
Chicago/Turabian StyleCamargo-Caicedo, Yiniva, Laura C. Mantilla-Romo, and Tomás R. Bolaño-Ortiz. 2021. "Emissions Reduction of Greenhouse Gases, Ozone Precursors, Aerosols and Acidifying Gases from Road Transportation during the COVID-19 Lockdown in Colombia" Applied Sciences 11, no. 4: 1458. https://doi.org/10.3390/app11041458
APA StyleCamargo-Caicedo, Y., Mantilla-Romo, L. C., & Bolaño-Ortiz, T. R. (2021). Emissions Reduction of Greenhouse Gases, Ozone Precursors, Aerosols and Acidifying Gases from Road Transportation during the COVID-19 Lockdown in Colombia. Applied Sciences, 11(4), 1458. https://doi.org/10.3390/app11041458