Early Detection of Alzheimer’s Disease Using Polar Harmonic Transforms and Optimized Wavelet Neural Network
Abstract
:1. Introduction
- (a)
- PHT is utilized for feature extraction. PHT not only has excellent reconstruction properties but also can be constructed without difficulty in an arbitrarily higher order [28]. More importantly, PHT shows robustness to noise, less information redundancy problems, and competent reconstruction ability in image analysis in comparison with ZMs and PZMs.
- (b)
- SaDE-WNN is an improvement of the Differential Evolution optimized WNN (DEWNN) [29] with the self-adaptation technique [30] for parameter control using two parameters of the standard DE. The proposed method is free from any human involvement. The proposed SaDE-WNN improves DE-WNN in terms of parameter tuning.
2. Materials and Methods
2.1. Data Collection
- (a)
- HC subjects: mini-mental state examination (MMSE) scores between 24 and 30, non-depressed, non-MCI, a clinical dementia rating (CDR) scale of 0, and non-demented.
- (b)
- MCI subjects: MMSE scores between 24 and 30; an absence of dementia; CDR of 0.5; strongly retained activities of daily living, and memory objection and objective memory loss measured by education-adjusted scores.
- (c)
- AD subjects: MMSE scores between 20 and 26 (inclusive); meet NINCDS/ADRDA criteria for portable AD, Geriatric Depression Scale (GDS) less than 6 and 5, and CDR of 0.5 or 1.0.
- (d)
- All the subjects were excluded if they had any other significant neurological disorder other than Alzheimer’s disease. In total, 892 subjects (AD = 258, MCI = 304, and HC = 330) were included in the current study. The demographics of the cohort are given in Table 1.
2.2. Pre-Processing
2.3. Feature Extraction
2.4. Feature Selection through Evaluating the In-Class and Among-Class Variance
2.5. Classification Using the SaDE-WNN Method
3. Experiments
3.1. Experimental Setting
3.2. Results
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, D.; Wee, C.Y.; Zhang, D.; Zhou, L.; Yap, P.T. Machine learning techniques for AD/MCI diagnosis and prognosis. Intell. Syst. Ref. Libr. 2014, 56, 147–179. [Google Scholar] [CrossRef]
- Chaddad, A.; Desrosiers, C.; Niazi, T. Deep Radiomic Analysis of MRI Related to Alzheimer’s Disease. IEEE Access 2018, 6, 58213–58221. [Google Scholar] [CrossRef]
- Costanza, R.; Daly, L.; Fioramonti, L.; Giovannini, E.; Kubiszewski, I.; Mortensen, L.F.; Pickett, K.E.; Ragnarsdottir, K.V.; De Vogli, R.; Wilkinson, R. Modelling and measuring sustainable wellbeing in connection with the UN Sustainable Development Goals. Ecol. Econ. 2016, 130, 350–355. [Google Scholar] [CrossRef]
- Curado, M.; Escolano, F.; Lozano, M.A.; Hancock, E.R. Early detection of Alzheimer’s disease: Detecting asymmetries with a return random walk link predictor. Entropy 2020, 22, 465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plocharski, M.; Østergaard, L.R. Extraction of sulcal medial surface and classification of Alzheimer’s disease using sulcal features. Comput. Methods Programs Biomed. 2016, 133, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Miao, Y.; Jiang, H.; Liu, H.; Yao, Y. dong An Alzheimers disease related genes identification method based on multiple classifier integration. Comput. Methods Programs Biomed. 2017, 150, 107–115. [Google Scholar] [CrossRef]
- Previtali, F.; Bertolazzi, P.; Felici, G.; Weitschek, E. A novel method and software for automatically classifying Alzheimer’s disease patients by magnetic resonance imaging analysis. Comput. Methods Programs Biomed. 2017, 143, 89–95. [Google Scholar] [CrossRef]
- Singh, S.P.; Urooj, S.; Lay-Ekuakille, A. Breast Cancer Detection Using PCPCET and ADEWNN: A Geometric Invariant Approach to Medical X-Ray Image Sensors. IEEE Sens. J. 2016, 16, 4847–4855. [Google Scholar] [CrossRef]
- Kim, J.; Kim, Y.-K. Crosstalk between Depression and Dementia with Resting-State fMRI Studies and Its Relationship with Cognitive Functioning. Biomedicines 2021, 9, 82. [Google Scholar] [CrossRef]
- Dachena, C.; Casu, S.; Fanti, A.; Lodi, M.B.; Mazzarella, G. Combined use of MRI, fMRIand cognitive data for Alzheimer’s Disease: Preliminary results. Appl. Sci. 2019, 9, 3156. [Google Scholar] [CrossRef] [Green Version]
- Frisoni, G.B.; Fox, N.C.; Jack, C.R.; Scheltens, P.; Thompson, P.M. The clinical use of structural MRI in Alzheimer disease. Nat. Rev. Neurol. 2010, 6, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.P.; Urooj, S. Wavelet packets based spectral estimation of textured images. In Proceedings of the 2015 IEEE International Conference on Computational Intelligence and Communication Technology, Ghaziabad, India, 13–14 February 2015; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2015; pp. 651–654. [Google Scholar]
- Eskildsen, S.F.; Coupé, P.; Fonov, V.S.; Pruessner, J.C.; Collins, D.L. Structural imaging biomarkers of Alzheimer’s disease: Predicting disease progression. Neurobiol. Aging 2015, 36, S23–S31. [Google Scholar] [CrossRef] [Green Version]
- Jiji, G.W.; Suji, G.E.; Rangini, M. An intelligent technique for detecting Alzheimer’s disease based on brain structural changes and hippocampal shape. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2014, 2, 121–128. [Google Scholar] [CrossRef]
- Ji, X.; Wang, H.; Zhu, M.; He, Y.; Zhang, H.; Chen, X.; Gao, W.; Fu, Y. Brainstem atrophy in the early stage of Alzheimer’s disease: A voxel-based morphometry study. Brain Imaging Behav. 2020, 1–11. [Google Scholar] [CrossRef]
- Raczek, M.; Cercignani, M.; Banerjee, S. Voxel-based morphometry and resting state fMRI as predictors of neuropsychiatric symptoms in Alzheimer’s disease. Alzheimer’s Dement. 2020, 16. [Google Scholar] [CrossRef]
- Wu, J.; Simon, M.A.; Brigham, J.C. A comparative analysis of global shape analysis methods for the assessment of the human right ventricle. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2016, 4, 327–343. [Google Scholar] [CrossRef] [Green Version]
- López, M.; Ramírez, J.; Górriz, J.M.; Álvarez, I.; Salas-Gonzalez, D.; Segovia, F.; Chaves, R.; Padilla, P.; Gómez-Río, M. Principal component analysis-based techniques and supervised classification schemes for the early detection of Alzheimer’s disease. Neurocomputing 2011, 74, 1260–1271. [Google Scholar] [CrossRef]
- Nemmi, F.; Sabatini, U.; Rascol, O.; Péran, P. Parkinson’s disease and local atrophy in subcortical nuclei: Insight from shape analysis. Neurobiol. Aging 2015, 36, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Cury, C.; Glaunès, J.; Chupin, M.; Colliot, O. Analysis of anatomical variability using diffeomorphic iterative centroid in patients with Alzheimer’s disease. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2017, 5, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Khedher, L.; Illán, I.A.; Górriz, J.M.; Ramírez, J.; Brahim, A.; Meyer-Baese, A. Independent Component Analysis-Support Vector Machine-Based Computer-Aided Diagnosis System for Alzheimer’s with Visual Support. Int. J. Neural Syst. 2016, 27, 1650050. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, S.; Sui, Y.; Yang, M.; Liu, B.; Cheng, H.; Sun, J.; Jia, W.; Phillips, P.; Gorriz, J.M. Multivariate approach for Alzheimer’s disease detection using stationary wavelet entropy and predator-prey particle swarm optimization. J. Alzheimer’s Dis. 2018, 65, 855–869. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.; Munilla, J.; Górriz, J.M.; Ramírez, J. Ensembles of Deep Learning Architectures for the Early Diagnosis of the Alzheimer’s Disease. Int. J. Neural Syst. 2016, 26, 1650025. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.P.; Urooj, S. An Improved CAD System for Breast Cancer Diagnosis Based on Generalized Pseudo-Zernike Moment and Ada-DEWNN Classifier. J. Med. Syst. 2016, 40, 1–13. [Google Scholar] [CrossRef]
- Singh, S.P.; Urooj, S. Three Types of Moment Invariants for Color Object Recognition Based on Radon and Polar Harmonic Transform in Cℓ (0, 2) Space. Arab. J. Sci. Eng. 2016, 41, 3051–3060. [Google Scholar] [CrossRef]
- Farokhi, S.; Sheikh, U.U.; Flusser, J.; Yang, B. Near infrared face recognition using Zernike moments and Hermite kernels. Inf. Sci. (Ny). 2015, 316, 234–245. [Google Scholar] [CrossRef]
- Gorji, H.T.; Haddadnia, J. A novel method for early diagnosis of Alzheimer’s disease based on pseudo Zernike moment from structural MRI. Neuroscience 2015, 305, 361–371. [Google Scholar] [CrossRef]
- Yap, P.T.; Jiang, X.; Chichung Kot, A. Two-dimensional polar harmonic transforms for invariant image representation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1259–1270. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, S.; Abraham, A.; Pan, J.S. Geometrically invariant image watermarking using Polar Harmonic Transforms. Inf. Sci. (Ny). 2012, 199, 1–19. [Google Scholar] [CrossRef]
- Li, Y. Image copy-move forgery detection based on polar cosine transform and approximate nearest neighbor searching. Forensic Sci. Int. 2013, 224, 59–67. [Google Scholar] [CrossRef]
- Singh, S.P.; Urooj, S. Localized Radon Polar Harmonic Transform (LRPHT) Based Rotation Invariant Analysis of Textured Images. Int. J. Syst. Dyn. Appl. 2015, 4, 21–41. [Google Scholar] [CrossRef]
- Urooj, S.; Singh, S.P. Rotation invariant detection of benign and malignant masses using PHT. In Proceedings of the 2015 International Conference on Computing for Sustainable Global Development, INDIACom 2015, New Delhi, India, 11–13 March 2015; pp. 1627–1632. [Google Scholar]
- Lv, J.; Jiang, X.; Li, X.; Zhu, D.; Chen, H.; Zhang, T.; Zhang, S.; Hu, X.; Han, J.; Huang, H.; et al. Sparse representation of whole-brain fMRI signals for identification of functional networks. Med. Image Anal. 2015, 20, 112–134. [Google Scholar] [CrossRef]
- Chauhan, N.; Ravi, V.; Karthik Chandra, D. Differential evolution trained wavelet neural networks: Application to bankruptcy prediction in banks. Expert Syst. Appl. 2009, 36, 7659–7665. [Google Scholar] [CrossRef]
- Dheeba, J.; Albert Singh, N.; Tamil Selvi, S. Computer-aided detection of breast cancer on mammograms: A swarm intelligence optimized wavelet neural network approach. J. Biomed. Inform. 2014, 49, 45–52. [Google Scholar] [CrossRef]
- Omran, M.G.H.; Salman, A.; Engelbrecht, A.P. Self-adaptive differential evolution. In Lecture Notes in Computer Science; including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3801 LNAI, pp. 192–199. [Google Scholar]
- Jack, C.R., Jr.; Bernstein, M.A.; Fox, N.C.; Thompson, P.; Alexander, G.; Harvey, D.; Borowski, B.; Britson, P.J.; Whitwell, J.L.; Ward, C.; et al. The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 2008, 27, 685–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teh, C.H.; Chin, R.T. On image analysis by the method of moments. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 10, 496–513. [Google Scholar] [CrossRef]
- Urooj, S.; Singh, S.P. Geometric invariant feature extraction of medical images using Hu’s invariants. In Proceedings of the 3rd International Conference on Computing for Sustainable Global Development, INDIACom 2016, New Delhi, India, 16–18 March 2016; pp. 1560–1562. [Google Scholar]
- Dabbaghchian, S.; Ghaemmaghami, M.P.; Aghagolzadeh, A. Feature extraction using discrete cosine transform and discrimination power analysis with a face recognition technology. Pattern Recognit. 2010, 43, 1431–1440. [Google Scholar] [CrossRef]
- Dheeba, J.; Selvi, S.T. A swarm optimized neural network system for classification of microcalcification in mammograms. J. Med. Syst. 2012, 36, 3051–3061. [Google Scholar] [CrossRef]
- Zhang, Q.; Benveniste, A. Wavelet Networks. IEEE Trans. Neural Networks 1992, 3, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Brest, J.; Greiner, S.; Bošković, B.; Mernik, M.; Zumer, V. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 2006, 10, 646–657. [Google Scholar] [CrossRef]
- Beach, T.G.; Monsell, S.E.; Phillips, L.E.; Kukull, W. Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005-2010. J. Neuropathol. Exp. Neurol. 2012, 71, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Khazaee, A.; Ebrahimzadeh, A.; Babajani-Feremi, A. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer’s disease. Brain Imaging Behav. 2016, 10, 799–817. [Google Scholar] [CrossRef] [PubMed]
- Challis, E.; Hurley, P.; Serra, L.; Bozzali, M.; Oliver, S.; Cercignani, M. Gaussian process classification of Alzheimer’s disease and mild cognitive impairment from resting-state fMRI. Neuroimage 2015, 112, 232–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.-T.; Lee, J.-D.; Chang, T.-C.; Huang, C.-H.; Wang, J.-J.; Hsu, W.-C.; Chan, H.-L.; Wai, Y.-Y.; Li, K.-Y. Discrimination between Alzheimer’s Disease and Mild Cognitive Impairment Using SOM and PSO-SVM. Comput. Math. Methods Med. 2013, 2013, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Nahata, H.; Singh, S.P. Deep Learning Solutions for Skin Cancer Detection and Diagnosis. In Machine Learning with Health Care Perspective; Springer: Cham, Switzerland, 2020; pp. 159–182. [Google Scholar]
- Singh, S.P.; Wang, L.; Gupta, S.; Goli, H.; Padmanabhan, P.; Gulyás, B. 3d deep learning on medical images: A review. Sensors 2020, 20, 5097. [Google Scholar] [CrossRef]
- Singh, S.P.; Wang, L.; Gupta, S.; Gulyas, B.; Padmanabhan, P. Shallow 3D CNN for Detecting Acute Brain Hemorrhage from Medical Imaging Sensors. IEEE Sens. J. 2020. [Google Scholar] [CrossRef]
- Tucholka, A.; Grau-Rivera, O.; Falcon, C.; Rami, L.; Sánchez-Valle, R.; Lladó, A.; Gispert, J.D.; Molinuevo, J.L. Structural connectivity alterations along the Alzheimer’s disease continuum: Reproducibility across two independent samples and correlation with cerebrospinal fluid amyloid-β and tau. J. Alzheimer’s Dis. 2018, 61, 1575–1587. [Google Scholar] [CrossRef] [Green Version]
- Nemy, M.; Grothe, M.; Barroso, J.; Teipel, S.J.; Westman, E.; Ferreira, D. Multimodal imaging reveals human cholinergic system functional and structural integrity in vivo. Alzheimer’s Dement. 2020, 16. [Google Scholar] [CrossRef]
- Herdick, M.; Dyrba, M.; Fritz, H.C.J.; Altenstein, S.; Ballarini, T.; Brosseron, F.; Buerger, K.; Can Cetindag, A.; Dechent, P.; Dobisch, L.; et al. Multimodal MRI analysis of basal forebrain structure and function across the Alzheimer’s disease spectrum. NeuroImage Clin. 2020, 28, 102495. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.A.; Hu, X.; Wu, H.; Wang, Y. Multimodal Data Analysis of Alzheimer’s Disease Based on Clustering Evolutionary Random Forest. IEEE J. Biomed. Heal. Inform. 2020, 24, 2973–2983. [Google Scholar] [CrossRef]
AD (n = 258, 108F/150M) | MCI (n = 304, 124F/180M) | HC (n = 330, 150F/180M) | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Range | Mean | SD | Range | Mean | SD | Range | |
Age [years] | 74.8 | 7.6 | 68–77 | 74.7 | 7.1 | 61–88 | 75.3 | 5.2 | 58–88 |
Education [years] | 14.9 | 3.4 | 8–20 | 15.9 | 2.9 | 12–20 | 15.8 | 3.2 | 12–20 |
MMSE | 23.6 | 1.9 | 20–26 | 27.0 | 1.7 | 24–30 | 28.6 | 1.3 | 25–30 |
CDR | 0.7 | 0.3 | 0.5–1.0 | 0.5 | 0.0 | 0.5–0.5 | 0.0 | 0.0 | 0.5–1.0 |
Feature Extraction Methods | Classifiers | AD vs. MCI | AD vs. HC | MCI vs. HC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sens. | Spec. | Acc. | F1 | Sens. | Spec. | Acc. | F1 | Sens. | Spec. | Acc. | F1 | ||
RM | DEWNN | 70.2 | 96.5 | 82.7 | 81.0 | 83.7 | 88.8 | 90.7 | 89.2 | 84.9 | 87.9 | 82.5 | 88.7 |
ZM | 72.0 | 94.9 | 87.8 | 82.8 | 85.5 | 92.3 | 92.7 | 90.4 | 92.5 | 92.8 | 87.2 | 89.7 | |
PCET | 83.0 | 95.2 | 91.6 | 88.6 | 86.9 | 94.2 | 91.9 | 90.2 | 93.4 | 83.5 | 91.0 | 89.9 | |
PCT | 84.1 | 95.6 | 92.0 | 86.0 | 87.6 | 96.6 | 93.3 | 91.7 | 93.5 | 86.1 | 92.5 | 91.3 | |
RM | Ada-DEWNN | 70.5 | 96.9 | 83.2 | 81.2 | 85.5 | 92.5 | 89.9 | 83.2 | 88.6 | 87.3 | 83.8 | 89.9 |
ZM | 72.8 | 98.2 | 89.4 | 85.3 | 86.7 | 94.8 | 92.1 | 91.1 | 92.5 | 90.6 | 90.5 | 90.1 | |
PCET | 80.9 | 97.9 | 91.8 | 86.7 | 86.9 | 95.5 | 92.7 | 92.7 | 93.9 | 84.8 | 91.7 | 91.7 | |
PCT | 85.9 | 97.2 | 92.7 | 87.2 | 87.7 | 97.3 | 93.0 | 92.5 | 94.7 | 87.7 | 92.5 | 92.0 | |
RM | SaDE-WNN | 70.7 | 97.5 | 85.7 | 83.7 | 83.3 | 95.6 | 90.8 | 91.0 | 89.0 | 88.6 | 88.8 | 87.8 |
ZM | 72.3 | 99.7 | 91.2 | 85.8 | 85.0 | 96.7 | 92.1 | 91.2 | 88.0 | 93.9 | 90.7 | 89.5 | |
PCET | 81.7 | 95.9 | 93.0 | 87.0 | 93.1 | 93.5 | 93.4 | 93.2 | 96.1 | 85.1 | 91.6 | 91.4 | |
PCT | 86.0 | 98.0 | 93.7 | 88.5 | 88.7 | 98.9 | 94.4 | 93.8 | 95.2 | 88.9 | 92.9 | 93.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urooj, S.; Singh, S.P.; Malibari, A.; Alrowais, F.; Kalathil, S. Early Detection of Alzheimer’s Disease Using Polar Harmonic Transforms and Optimized Wavelet Neural Network. Appl. Sci. 2021, 11, 1574. https://doi.org/10.3390/app11041574
Urooj S, Singh SP, Malibari A, Alrowais F, Kalathil S. Early Detection of Alzheimer’s Disease Using Polar Harmonic Transforms and Optimized Wavelet Neural Network. Applied Sciences. 2021; 11(4):1574. https://doi.org/10.3390/app11041574
Chicago/Turabian StyleUrooj, Shabana, Satya P. Singh, Areej Malibari, Fadwa Alrowais, and Shaeen Kalathil. 2021. "Early Detection of Alzheimer’s Disease Using Polar Harmonic Transforms and Optimized Wavelet Neural Network" Applied Sciences 11, no. 4: 1574. https://doi.org/10.3390/app11041574
APA StyleUrooj, S., Singh, S. P., Malibari, A., Alrowais, F., & Kalathil, S. (2021). Early Detection of Alzheimer’s Disease Using Polar Harmonic Transforms and Optimized Wavelet Neural Network. Applied Sciences, 11(4), 1574. https://doi.org/10.3390/app11041574