An Estimator for the Kinematic Behaviour of a Mobile Robot Subject to Large Lateral Slip
Abstract
:1. Introduction
2. Kinematic Model
2.1. Robot Architecture
2.2. Kinematic Model
- The model is purely kinematic.
- The model considers only planar motion on a flat surface; out-of-plane motions are neglected.
- The locomotion units are simplified considering a single equivalent wheel per side with the axis passing through the centre of mass of the module.
3. Experimental Identification of the Estimator
3.1. Experimental Setup
3.2. Tracking Method
3.3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shih, C.-L.; Lin, L.-C. Trajectory Planning and Tracking Control of a Differential-Drive Mobile Robot in a Picture Drawing Application. Robotics 2017, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Begnini, M.; Bertol, D.W.; Martins, N.A. A Robust Adaptive Fuzzy Variable Structure Tracking Control for the Wheeled Mobile Robot: Simulation and Experimental Results. Control Eng. Pract. 2017, 64, 27–43. [Google Scholar] [CrossRef]
- Miah, S.; Shaik, F.; Chaoui, H. Universal Dynamic Tracking Control Law for Mobile Robot Trajectory Tracking. In Proceedings of the 2017 IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, Canada, 22–25 March 2017; pp. 896–901. [Google Scholar]
- Matraji, I.; Al-Durra, A.; Haryono, A.; Al-Wahedi, K.; Abou-Khousa, M. Trajectory Tracking Control of Skid-Steered Mobile Robot Based on Adaptive Second Order Sliding Mode Control. Control Eng. Pract. 2018, 72, 167–176. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Yang, X.; Hu, F.; Jiang, A.; Yang, C. Trajectory Tracking of an Omni-Directional Wheeled Mobile Robot Using a Model Predictive Control Strategy. Appl. Sci. 2018, 8, 231. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.B.; Arat, M.A.; Taheri, S. Literature Review and Fundamental Approaches for Vehicle and Tire State Estimation. Veh. Syst. Dyn. 2019, 57, 1643–1665. [Google Scholar] [CrossRef]
- Piyabongkarn, D.; Rajamani, R.; Grogg, J.A.; Lew, J.Y. Development and Experimental Evaluation of a Slip Angle Estimator for Vehicle Stability Control. IEEE Trans. Control Syst. Technol. 2009, 17, 78–88. [Google Scholar] [CrossRef]
- Chindamo, D.; Lenzo, B.; Gadola, M. On the Vehicle Sideslip Angle Estimation: A Literature Review of Methods, Models, and Innovations. Appl. Sci. 2018, 8, 355. [Google Scholar] [CrossRef] [Green Version]
- Alipour, K.; Robat, A.B.; Tarvirdizadeh, B. Dynamics Modeling and Sliding Mode Control of Tractor-Trailer Wheeled Mobile Robots Subject to Wheels Slip. Mech. Mach. Theory 2019, 138, 16–37. [Google Scholar] [CrossRef]
- Tian, Y.; Sarkar, N. Control of a Mobile Robot Subject to Wheel Slip. J. Intell. Robot. Syst. 2014, 74, 915–929. [Google Scholar] [CrossRef]
- Kim, D.; Yoon, H.; Kim, K.; Sreejith, M.S.; Lee, J. Using Current Sensing Method and Fuzzy PID Controller for Slip Phenomena Estimation and Compensation of Mobile Robot. In Proceedings of the 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju, Korea, 28 June–1 July 2017; pp. 397–401. [Google Scholar]
- Liu, F.; Li, X.; Yuan, S.; Lan, W. Slip-Aware Motion Estimation for Off-Road Mobile Robots via Multi-Innovation Unscented Kalman Filter. IEEE Access 2020, 8, 43482–43496. [Google Scholar] [CrossRef]
- Cui, M.; Liu, H.; Liu, W.; Qin, Y. An Adaptive Unscented Kalman Filter-Based Controller for Simultaneous Obstacle Avoidance and Tracking of Wheeled Mobile Robots with Unknown Slipping Parameters. J. Intell. Robot. Syst. 2018, 92, 489–504. [Google Scholar] [CrossRef]
- Toledo-Moreo, R.; Colodro-Conde, C.; Toledo-Moreo, J. A Multiple-Model Particle Filter Fusion Algorithm for GNSS/DR Slide Error Detection and Compensation. Appl. Sci. 2018, 8, 445. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Yao, Z.; Fan, C.; Wang, S.; Lu, M. Rao-Blackwellised Particle Filtering for Low-Cost Encoder/INS/GNSS Integrated Vehicle Navigation with Wheel Slipping. Iet RadarSonar Amp Navig. 2019, 13, 1890–1898. [Google Scholar] [CrossRef]
- Yi, J.; Zhang, J.; Song, D.; Jayasuriya, S. IMU-based localization and slip estimation for skid-steered mobile robots. In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 2845–2850. [Google Scholar]
- Reina, G.; Ishigami, G.; Nagatani, K.; Yoshida, K. Vision-Based Estimation of Slip Angle for Mobile Robots and Planetary Rovers. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 486–491. [Google Scholar]
- Martínez, J.L.; Mandow, A.; Morales, J.; Pedraza, S.; García-Cerezo, A. Approximating Kinematics for Tracked Mobile Robots. Int. J. Robot. Res. 2005, 24, 867–878. [Google Scholar] [CrossRef]
- Gonzalez, R.; Iagnemma, K. Slippage Estimation and Compensation for Planetary Exploration Rovers. State of the Art and Future Challenges. J. Field Robot. 2018, 35, 564–577. [Google Scholar] [CrossRef]
- Quaglia, G.; Nisi, M. Design and Construction of a New Version of the Epi.q UGV for Monitoring and Surveillance Tasks; American Society of Mechanical Engineers Digital Collection: Houston, TX, USA, 2016. [Google Scholar]
- Bruzzone, L.; Quaglia, G. Locomotion Systems for Ground Mobile Robots in Unstructured Environments. Mech. Sci. 2012, 3, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Botta, A.; Cavallone, P.; Carbonari, L.; Tagliavini, L.; Quaglia, G. Modelling and Experimental Validation of Articulated Mobile Robots with Hybrid Locomotion System. In Proceedings of the Advances in Italian Mechanism Science; Niola, V., Gasparetto, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 758–767. [Google Scholar]
- Botta, A.; Quaglia, G. Performance Analysis of Low-Cost Tracking System for Mobile Robots. Machines 2020, 8, 29. [Google Scholar] [CrossRef]
- Garrido-Jurado, S.; Muñoz-Salinas, R.; Madrid-Cuevas, F.J.; Marín-Jiménez, M.J. Automatic Generation and Detection of Highly Reliable Fiducial Markers under Occlusion. Pattern Recognit. 2014, 47, 2280–2292. [Google Scholar] [CrossRef]
- Garrido-Jurado, S.; Muñoz-Salinas, R.; Madrid-Cuevas, F.J.; Medina-Carnicer, R. Generation of Fiducial Marker Dictionaries Using Mixed Integer Linear Programming. Pattern Recognit. 2016, 51, 481–491. [Google Scholar] [CrossRef]
- Romero-Ramirez, F.J.; Muñoz-Salinas, R.; Medina-Carnicer, R. Speeded up Detection of Squared Fiducial Markers. Image Vis. Comput. 2018, 76, 38–47. [Google Scholar] [CrossRef]
Test | Longitudinal Speed [m/s] | Yaw Rate [rad/s] | |||
---|---|---|---|---|---|
1 | 0.412 | 0.961 | 0.429 | 0.452 | 0.303 |
2 | 0.393 | 0.915 | 0.430 | 0.458 | 0.296 |
3 | 0.310 | 0.616 | 0.504 | 0.621 | 0.319 |
4 | 0.319 | 0.596 | 0.535 | 0.598 | 0.314 |
5 | 0.384 | 0.940 | 0.408 | 0.427 | 0.333 |
6 | 0.405 | 1.001 | 0.405 | 0.525 | 0.336 |
7 | 0.299 | 0.305 | 0.983 | 1.225 | 0.333 |
8 | 0.285 | 0.311 | 0.916 | 0.965 | 0.337 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botta, A.; Cavallone, P.; Tagliavini, L.; Carbonari, L.; Visconte, C.; Quaglia, G. An Estimator for the Kinematic Behaviour of a Mobile Robot Subject to Large Lateral Slip. Appl. Sci. 2021, 11, 1594. https://doi.org/10.3390/app11041594
Botta A, Cavallone P, Tagliavini L, Carbonari L, Visconte C, Quaglia G. An Estimator for the Kinematic Behaviour of a Mobile Robot Subject to Large Lateral Slip. Applied Sciences. 2021; 11(4):1594. https://doi.org/10.3390/app11041594
Chicago/Turabian StyleBotta, Andrea, Paride Cavallone, Luigi Tagliavini, Luca Carbonari, Carmen Visconte, and Giuseppe Quaglia. 2021. "An Estimator for the Kinematic Behaviour of a Mobile Robot Subject to Large Lateral Slip" Applied Sciences 11, no. 4: 1594. https://doi.org/10.3390/app11041594
APA StyleBotta, A., Cavallone, P., Tagliavini, L., Carbonari, L., Visconte, C., & Quaglia, G. (2021). An Estimator for the Kinematic Behaviour of a Mobile Robot Subject to Large Lateral Slip. Applied Sciences, 11(4), 1594. https://doi.org/10.3390/app11041594