Deliquescence Behavior of Deep Eutectic Solvents
Abstract
:1. Introduction
2. Results
2.1. Thermal Phase Behavior
2.2. Deliquescence and Moisture Sorption
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Thermomicroscopy
4.3. Predicted Thermal Phase Behavior
4.4. Desiccator
4.5. Thermogravimetric Analysis
4.6. Dynamic Vapor Sorption Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Perna, F.M.; Vitale, P.; Capriati, V. Deep eutectic solvents and their applications as green solvents. Curr. Opin. Green Sustain. Chem. 2020, 21, 27–33. [Google Scholar] [CrossRef]
- Hooshmand, S.E.; Afshari, R.; Ramón, D.J.; Varmae, R.S. Deep eutectic solvents: Cutting-edge applications in cross-coupling reactions. Green Chem. 2020, 22, 3668–3692. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Vigier, K.D.O.; Royera, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef]
- Martins, M.A.; Pinho, S.P.; Coutinho, J.A. Insights into the Nature of Eutectic and Deep Eutectic Mixtures. J. Solut. Chem. 2019, 48, 962–982. [Google Scholar] [CrossRef] [Green Version]
- Hammond, O.S.; Bowron, D.T.; Jackson, A.J.; Arnol, T.; Sanchez-Fernandez, A.; Tsapatsaris, N.; Sakai, V.G.; Edler, K.J. Resilience of Malic Acid Natural Deep Eutectic Solvent Nanostructure to Solidification and Hydration. J. Phys. Chem. B 2017, 121, 7473–7483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammond, O.S.; Bowron, D.T.; Edler, K.J. The effect of water upon deep eutectic solvent nanostructure: An unusual transition from ionic mixture to aqueous solution. Angew. Chem. Int. Ed. 2017, 56, 9782–9785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapir, L.; Harries, D. Restructuring a Deep Eutectic Solvent by Water: The Nanostructure of Hydrated Choline Chloride/Urea. J. Chem. Theory Comput. 2020, 16, 3335–3342. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Zhao, B.; Chen, X.-B.; Birbilis, N.; Yang, H. Effect of water presence on choline chloride-2urea ionic liquid and coating platings from the hydrated ionic liquid. Sci. Rep. 2016, 6, 29225. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef]
- Lu, C.; Cao, J.; Wanga, N.; Su, E. Significantly improving the solubility of non-steroidal anti-inflammatory drugs in deep eutectic solvents for potential non-aqueous liquid administration. MedChemComm 2016, 7, 955–959. [Google Scholar] [CrossRef]
- Shah, D.; Mjalli, F.S. Effect of water on the thermo-physical properties of Reline: An experimental and molecular simulation based approach. Phys. Chem. Chem. Phys. 2014, 16, 23900–23907. [Google Scholar] [CrossRef] [PubMed]
- Kwok, K.; Mauer, L.J.; Taylor, L.S. Phase behavior and moisture sorption of deliquescent powders. Chem. Eng. Sci. 2010, 65, 5639–5650. [Google Scholar] [CrossRef]
- Salameh, A.K.; Taylor, L.S. Deliquescence in binary mixtures. Pharm. Res. 2005, 22, 318–324. [Google Scholar] [CrossRef]
- Tkachenko, M.; Zhnyakina, L.; Kosmynin, A. Physicochemical investigation of paracetamol-caffeine solid mixtures. Pharm. Chem. J. 2003, 37, 430–432. [Google Scholar] [CrossRef]
- Palmelund, H.; Boyd, B.J.; Rantanen, J.; Löbmann, K. Influence of water of crystallization on the ternary phase behavior of a drug and deep eutectic solvent. J. Mol. Liq. 2020, 315, 113727. [Google Scholar] [CrossRef]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheedet, R.K. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.-X.; Qi, S.-J.; Xin, R.-P.; Yang, B.; Wang, Y.-H. Synergistic behavior of betaine-urea mixture: Formation of deep eutectic solvent. J. Mol. Liq. 2016, 219, 74–78. [Google Scholar] [CrossRef]
- Maugeri, Z.; de María, P.D. Novel choline-chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: Levulinic acid and sugar-based polyols. RSC Adv. 2012, 2, 421–425. [Google Scholar] [CrossRef]
- Jeliński, T.; Przybyłek, M.; Cysewski, P. Solubility advantage of sulfanilamide and sulfacetamide in natural deep eutectic systems: Experimental and theoretical investigations. Drug Dev. Ind. Pharm. 2019, 45, 1120–1129. [Google Scholar] [CrossRef]
- Hayyan, A.; Mjalli, F.S.; AlNashef, I.M.; Al-Wahaibi, Y.M.; Al-Wahaibi, T.; Hashimb, M.A. Glucose-based deep eutectic solvents: Physical properties. J. Mol. Liq. 2013, 178, 137–141. [Google Scholar] [CrossRef]
- Abbott, A.P.; Ahmed, E.I.; Prasad, K.; Qader, I.B.; Ryder, K.S. Liquid pharmaceuticals formulation by eutectic formation. Fluid Phase Equilib. 2017, 448, 2–8. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.P.; Fernandez, L.; Conceição, J.H.F.; Martins, M.A.R.; Sosa, A.; Ortega, J.; Pinho, S.P.; Coutinho, J.A.P. Design and characterization of sugar-based deep eutectic solvents using COSMO-RS. ACS Sustain. Chem. Eng. 2018, 6, 10724–10734. [Google Scholar] [CrossRef] [Green Version]
- Abranches, D.O.; Larriba, M.; Silvaa, L.P.; Melle-Franco, M.; Palomar, J.F.; Pinho, S.P.; Coutinho, J.A.P. Using COSMO-RS to design choline chloride pharmaceutical eutectic solvents. Fluid Phase Equilib. 2019, 497, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yu, D.; Chen, W.; Fu, L.; Mu, T. Water absorption by deep eutectic solvents. Phys. Chem. Chem. Phys. 2019, 21, 2601–2610. [Google Scholar] [CrossRef]
- Rathore, A.S. Roadmap for implementation of quality by design (QbD) for biotechnology products. Trends Biotechnol. 2009, 27, 546–553. [Google Scholar] [CrossRef]
- Löbmann, K.; Laitinen, R.; Grohganz, H.; Gordon, K.C.; Strachan, C.; Rades, T. Coamorphous drug systems: Enhanced physical stability and dissolution rate of indomethacin and naproxen. Mol. Pharm. 2011, 8, 1919–1928. [Google Scholar] [CrossRef]
- Cingolani, A.; Berchiesi, G. Thermodynamic properties of organic compounds. J. Therm. Anal. 1974, 6, 87–90. [Google Scholar] [CrossRef]
- Tong, B.; Tan, Z.-C.; Shi, Q.; Li, Y.-S.; Yue, D.-T.; Wang, S.-X. Thermodynamic investigation of several natural polyols (I): Heat capacities and thermodynamic properties of xylitol. Thermochim. Acta 2007, 457, 20–26. [Google Scholar] [CrossRef]
- Rai, U.; Rai, R. Physical chemistry of organic eutectics. J. Therm. Anal. Calorim. 1998, 53, 883–893. [Google Scholar] [CrossRef]
- Fernandez, L.; Silva, L.P.; Martins, M.A.R.; Ferreir, O.; Ortega, J.; Pinho, S.P.; Coutinho, J.A.P. Indirect assessment of the fusion properties of choline chloride from solid-liquid equilibria data. Fluid Phase Equilib. 2017, 448, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, Y.; Wang, J. Solubility measurement and modeling for betaine in different pure solvents. J. Chem. Eng. Data 2014, 59, 2511–2516. [Google Scholar] [CrossRef]
Eutectic Composition * | Eutonic Composition * | |
---|---|---|
ChCl/xylitol | n/a | 0.7–0.8 |
ChCl/succinic acid | 0.5 | 0.8 |
Betaine/xylitol | 0.45 | 0.6 |
Betaine/urea | 0.2–0.3 | 0.4–0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmelund, H.; Rantanen, J.; Löbmann, K. Deliquescence Behavior of Deep Eutectic Solvents. Appl. Sci. 2021, 11, 1601. https://doi.org/10.3390/app11041601
Palmelund H, Rantanen J, Löbmann K. Deliquescence Behavior of Deep Eutectic Solvents. Applied Sciences. 2021; 11(4):1601. https://doi.org/10.3390/app11041601
Chicago/Turabian StylePalmelund, Henrik, Jukka Rantanen, and Korbinian Löbmann. 2021. "Deliquescence Behavior of Deep Eutectic Solvents" Applied Sciences 11, no. 4: 1601. https://doi.org/10.3390/app11041601
APA StylePalmelund, H., Rantanen, J., & Löbmann, K. (2021). Deliquescence Behavior of Deep Eutectic Solvents. Applied Sciences, 11(4), 1601. https://doi.org/10.3390/app11041601