Cosmeceutical Potential of Grateloupia turuturu: Using Low-Cost Extraction Methodologies to Obtain Added-Value Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seaweed Collection
2.2. Seaweed Extracts
2.3. Antioxidant Activity and UV Absorbance
2.4. Anti-Enzymatic Activity
2.4.1. Elastase Inhibition
2.4.2. Hyaluronidase Inhibition
2.5. Antimicrobial Activity
2.6. Photoprotection Activity
2.7. NO Measurement
2.8. Data Treatment
3. Results
3.1. Antioxidant Activity and UV Absorbance
3.2. Anti-Enzymatic Activity
3.3. Antimicrobial Activity
3.4. Photoprotection Activity
3.5. Nitric Oxide (NO) Measurement
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jesumani, V.; Du, H.; Aslam, M.; Pei, P.; Huang, N. Potential use of seaweed bioactive compounds in skincare—a review. Mar. Drugs 2019, 17, 688. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, F.B.; Alves, R.C.; Rodrigues, F.; Oliveira, M.B.P.P. Macroalgae-derived ingredients for cosmetic industry-an update. Cosmetics 2018, 5, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Freitas, C.; Araújo, R.; Bertocci, I. Patterns of benthic assemblages invaded and non-invaded by Grateloupia turuturu across rocky intertidal habitats. J. Sea Res. 2016, 115, 26–32. [Google Scholar] [CrossRef]
- Sekar, S.; Chandramohan, M. Phycobiliproteins as a commodity: Trends in applied research, patents and commercialization. J. Appl. Phycol. 2008, 20, 113–136. [Google Scholar] [CrossRef]
- Terasaki, M.; Narayan, B.; Kamogawa, H.; Nomura, M.; Stephen, N.M.; Kawagoe, C.; Hosokawa, M.; Miyashita, K. Carotenoid profile of edible japanese seaweeds: An improved hplc method for separation of major carotenoids. J. Aquat. Food Prod. Technol. 2012, 21, 468–479. [Google Scholar] [CrossRef]
- Li, W.; Su, H.N.; Pu, Y.; Chen, J.; Liu, L.N.; Liu, Q.; Qin, S. Phycobiliproteins: Molecular structure, production, applications, and prospects. Biotechnol. Adv. 2019, 37, 340–353. [Google Scholar] [CrossRef]
- Cardoso, I.; Cotas, J.; Rodrigues, A.; Ferreira, D.; Osório, N.; Pereira, L. Extraction and analysis of compounds with antibacterial potential from the red alga Grateloupia turuturu. J. Mar. Sci. Eng. 2019, 7, 220. [Google Scholar] [CrossRef] [Green Version]
- Araújo, R.; Violante, J.; Pereira, R.; Abreu, H.; Arenas, F.; Sousa-Pinto, I. Distribution and population dynamics of the introduced seaweed Grateloupia turuturu (halymeniaceae, rhodophyta) along the Portuguese coast. Phycologia 2011, 50, 392–402. [Google Scholar] [CrossRef]
- Félix, R.; Carmona, A.M.; Félix, C.; Novais, S.C.; Lemos, M.F.L. Industry-friendly hydroethanolic extraction protocols for grateloupia turuturu UV-shielding and antioxidant compounds. Appl. Sci. 2020, 10, 5304. [Google Scholar] [CrossRef]
- Lourenço-Lopes, C.; Fraga-Corral, M.; Jimenez-Lopez, C.; Pereira, A.G.; Garcia-Oliveira, P.; Carpena, M.; Prieto, M.A.; Simal-Gandara, J. Metabolites from macroalgae and its applications in the cosmetic industry: A circular economy approach. Resources 2020, 9, 101. [Google Scholar] [CrossRef]
- Ariede, M.B.; Candido, T.M.; Jacome, A.L.M.; Velasco, M.V.R.; de Carvalho, J.C.M.; Baby, A.R. Cosmetic attributes of algae - A review. Algal Res. 2017, 25, 483–487. [Google Scholar] [CrossRef]
- Dávalos, A.; Gómez-Cordovés, C.; Bartolomé, B. Extending Applicability of the Oxygen Radical Absorbance Capacity (ORAC-Fluorescein) Assay. J. Agric. Food Chem. 2004, 52, 48–54. [Google Scholar] [CrossRef]
- Madan, K.; Nanda, S. In-vitro evaluation of antioxidant, anti-elastase, anti-collagenase, anti-hyaluronidase activities of safranal and determination of its sun protection factor in skin photoaging. Bioorg. Chem. 2018, 77, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, K.; Olech, M.; Abramek, J.; Pietrzak, W.; Kuźniewski, R.; Bogucka-Kocka, A.; Nowak, R.; Ptaszyńska, A.A.; Rapacka-Gackowska, A.; Skalski, T.; et al. Eleutherococcus species cultivated in Europe: A new source of compounds with antiacetylcholinesterase, antihyaluronidase, anti-DPPH, and cytotoxic activities. Oxid. Med. Cell. Longev. 2019, 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. In Clinical and Laboratory Standards Institute; Approved Standard - M7-A7; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2006; Volume 26, ISBN 1562386255. [Google Scholar]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard - M27-A3; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2006; Volume 28, pp. 0–13. [Google Scholar]
- Repetto, G.; del Peso, A.; Zurita, J.L. Neutral red uptake assay for the estimation of cell viability/ cytotoxicity. Nat. Protoc. 2008, 3, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- OECD. OECD Test Guideline 432: In Vitro 3T3 NRU Phototoxicity Test. 2004, pp. 1–15. Available online: https://www.oecd-ilibrary.org/environment/test-no-432-in-vitro-3t3-nru-phototoxicity-test_9789264071162-en (accessed on 12 February 2021).
- Bahiense, J.B.; Marques, F.M.; Figueira, M.M.; Vargas, T.S.; Kondratyuk, T.P.; Endringer, D.C.; Scherer, R.; Fronza, M. Potential anti-inflammatory, antioxidant and antimicrobial activities of Sambucus australis. Pharm. Biol. 2017, 55, 991–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 2009, 14, 2167–2180. [Google Scholar] [CrossRef]
- Masaki, H. Role of antioxidants in the skin: Anti-aging effects. J. Dermatol. Sci. 2010, 58, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.K.; Troy, D.J. Seaweed Sustainability - Food and Non-Food Applications. Tiwari, B.K., Troy, D.J., Eds.; Elsevier Inc.: New York, NY, USA, 2015; ISBN 9780124186972. [Google Scholar]
- Shalaby, E.A. Algae as promising organisms for environment and health. Plant Signal. Behav. 2011, 6, 1338–1350. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Vaquero, M.; Rajauria, G.; O’Doherty, J.V.; Sweeney, T. Polysaccharides from macroalgae: Recent advances, innovative technologies and challenges in extraction and purification. Food Res. Int. 2017, 99, 1011–1020. [Google Scholar] [CrossRef] [Green Version]
- Ye, D.; Jiang, Z.; Zheng, F.; Wang, H.; Zhang, Y.; Gao, F.; Chen, P.; Chen, Y.; Shi, G. Optimized extraction of polysaccharides from Grateloupia livida (Harv.) yamada and biological activities. Molecules 2015, 20, 16817–16832. [Google Scholar] [CrossRef]
- Tang, L.; Chen, Y.; Jiang, Z.; Zhong, S.; Chen, W.; Zheng, F.; Shi, G. Purification, partial characterization and bioactivity of sulfated polysaccharides from Grateloupia livida. Int. J. Biol. Macromol. 2017, 94, 642–652. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Quito, E.M.; Ruiz-Caro, R.; Veiga, M.D. Carrageenan: Drug Delivery Systems and Other Biomedical Applications. Mar. Drugs 2020, 18, 583. [Google Scholar] [CrossRef] [PubMed]
- Athukorala, Y.; Lee, K.; Song, C.; Ahn, C.; Shin, T.; Cha, Y.-J.; Shahid, F.; Jeon, Y.-J. Potential antioxidant activity of marine red alga grateloupia filicina extracts. J. Food Lipids 2003, 10, 251–265. [Google Scholar] [CrossRef]
- Pereira, L. Seaweeds as source of bioactive substances and skin care therapy-Cosmeceuticals, algotheraphy, and thalassotherapy. Cosmetics 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Malerich, S.; Berson, D. Next generation cosmeceuticals. The latest in peptides, growth factors, cytokines, and stem cells. Dermatol. Clin. 2014, 32, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Ryu, B.M.; Qian, Z.J.; Kim, M.M.; Nam, K.W.; Kim, S.K. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract. Radiat. Phys. Chem. 2009, 78, 98–105. [Google Scholar] [CrossRef]
- Terazawa, S.; Nakano, M.; Yamamoto, A.; Imokawa, G. Mycosporine-like amino acids stimulate hyaluronan secretion by up-regulating hyaluronan synthase 2 via activation of the p38/MSK1/CREB/c-Fos/AP-1 axis. J. Biol. Chem. 2020, 295, 7274–7288. [Google Scholar] [CrossRef] [Green Version]
- Orfanoudaki, M.; Hartmann, A.; Alilou, M.; Gelbrich, T.; Planchenault, P.; Derbré, S.; Schinkovitz, A.; Richomme, P.; Hensel, A.; Ganzera, M. Absolute configuration of mycosporine-like amino acids, their wound healing properties and in vitro anti-aging effects. Mar. Drugs 2020, 18, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, M.J.; Falqué, E.; Domínguez, H. Antimicrobial action of compounds from marine seaweed. Mar. Drugs 2016, 14, 52. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.; Silva, S.A.; Carpena, M.; Garcia-Oliveira, P.; Gullón, P.; Barroso, M.F.; Prieto, M.A.; Simal-Gandara, J. Macroalgae as a source of valuable antimicrobial compounds: Extraction and applications. Antibiotics 2020, 9, 642. [Google Scholar] [CrossRef] [PubMed]
- Plouguerné, E.; Hellio, C.; Deslandes, E.; Véron, B.; Stiger-Pouvreau, V. Anti-microfouling activities in extracts of two invasive algae: Grateloupia turuturu and Sargassum muticum. Bot. Mar. 2008, 51, 202–208. [Google Scholar] [CrossRef]
- Álvarez-Gómez, F.; Korbee, N.; Casas-Arrojo, V.; Abdala-Díaz, R.T.; Figueroa, F.L. UV photoprotection, cytotoxicity and immunology capacity of red algae extracts. Molecules 2019, 24, 341. [Google Scholar] [CrossRef] [Green Version]
- Bedoux, G.; Hardouin, K.; Burlot, A.S.; Bourgougnon, N. Bioactive components from seaweeds: Cosmetic applications and future development; Elsevier: New York, NY, USA, 2014; Volume 71, ISBN 9780124080621. [Google Scholar]
- Pereira, L. Seaweed flora of the european north atlantic and mediterranean. In Springer Handbook of Marine Biotechnology; Springer: Cham, Switzerland, 2015; pp. 65–178. ISBN 9783642539718. [Google Scholar]
- de Ramos, B.; da Costa, G.B.; Ramlov, F.; Maraschin, M.; Horta, P.A.; Figueroa, F.L.; Korbee, N.; Bonomi-Barufi, J. Ecophysiological implications of UV radiation in the interspecific interaction of Pyropia acanthophora and Grateloupia turuturu (Rhodophyta). Mar. Environ. Res. 2019, 144, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Fernando, I.P.S.; Nah, J.W.; Jeon, Y.J. Potential anti-inflammatory natural products from marine algae. Environ. Toxicol. Pharmacol. 2016, 48, 22–30. [Google Scholar] [CrossRef]
Extracts | Temperature (°C) | pH | % EtOH | Time (min) | SLR |
---|---|---|---|---|---|
E1 | 30 | 9 | 50 | 60 | 1:40 |
E2 | 100 | 9 | 50 | 60 | 1:40 |
E3 | 100 | 7 | 25 | 100 | 1:10 |
E4 | 20 | 4 | 25 | 100 | 1:10 |
E5 | 20 | 9 | 0 | 20 | 1:40 |
E6 | 100 | 9 | 0 | 20 | 1:40 |
Extracts | EtOH (%) | Yield (%) | ORAC (µmol TE· −1 ext) | UV AUC | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Significant Differences | Mean | SD | Significant Differences | |||
E1 | 50 | 24.39 | 153.1 | 11.37 | a | 5.82 | 0.25 | a |
E2 | 50 | 28.56 | 102.3 | 8.33 | b | 4.06 | 0.16 | b |
E3 | 25 | 24.28 | 45.98 | 2.82 | c | 1.63 | 0.13 | c |
E4 | 25 | 23.50 | 66.81 | 6.79 | d | 3.20 | 0.03 | d |
E5 | 0 | 43.37 | 50.26 | 2.89 | c | 3.08 | 0.25 | d |
E6 | 0 | 50.84 | 45.00 | 3.77 | c | 2.26 | 0.30 | e |
Staphylococcus aureus | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E1 | E2 | E3 | E4 | E5 | E6 | C + (Tetracycline) | ||||||||
mg·mL−1 | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD |
3 | 17.22 | 5.25 | 37.77 | 5.84 | 54.01 | 1.48 | 28.37 | 4.50 | 32.40 | 7.95 | 35.80 | 4.68 | 100.56 | 0.26 |
1.5 | 15.14 | 4.36 | 26.88 | 5.85 | 52.99 | 3.67 | 25.60 | 4.41 | 23.72 | 6.71 | 24.90 | 7.99 | 101.18 | 1.23 |
0.75 | 29.58 | 8.93 | 35.13 | 8.60 | 52.64 | 3.66 | 38.33 | 2.88 | 10.79 | 21.08 | 4.28 | 23.15 | 100.54 | 0.22 |
0.0075 | −8.93 | 2.33 | −3.49 | 3.31 | −9.23 | 5.29 | −5.86 | 5.99 | −10.58 | 6.05 | −10.63 | 5.72 | 100.23 | 1.02 |
Escherichia coli | ||||||||||||||
E1 | E2 | E3 | E4 | E5 | E6 | C + (Ciprofloxacin) | ||||||||
mg·mL−1 | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD |
3 | 21.14 | 1.70 | 25.79 | 0.17 | 16.67 | 3.28 | 11.33 | 4.88 | 17.58 | 5.80 | 13.87 | 6.57 | 106.10 | 2.57 |
1.5 | 30.69 | 0.72 | 32.99 | 2.01 | 25.68 | 7.04 | 23.10 | 9.54 | 27.07 | 10.52 | 26.18 | 10.79 | 106.10 | 2.57 |
0.75 | 33.89 | 4.43 | 36.27 | 5.31 | 10.51 | 5.23 | 7.00 | 3.97 | 4.61 | 2.92 | 15.73 | 4.40 | 105.69 | 0.71 |
0.0075 | 20.04 | 0.17 | 29.28 | 11.34 | 4.85 | 1.00 | 3.95 | 0.44 | 3.45 | 1.92 | 4.51 | 1.70 | 106.01 | 0.80 |
Candida albicans | ||||||||||||||
E1 | E2 | E3 | E4 | E5 | E6 | C + (Amphotericin B) | ||||||||
mg·mL−1 | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD |
3 | 7.40 | 2.22 | 4.77 | 2.16 | 41.32 | 6.95 | 31.54 | 1.87 | 37.64 | 2.42 | 37.18 | 2.04 | 101.42 | 0.54 |
1.5 | 3.87 | 0.47 | 5.45 | 1.15 | 21.08 | 5.31 | 31.11 | 0.98 | 23.94 | 4.97 | 32.56 | 3.03 | 101.42 | 0.54 |
0.75 | 20.98 | 6.65 | 28.09 | 1.68 | −26.55 | 12.72 | −14.58 | 8.44 | −8.71 | 4.34 | −3.06 | 14.70 | 105.27 | 2.30 |
0.0075 | 23.89 | 2.22 | 8.69 | 6.14 | 41.53 | 4.44 | 55.26 | 2.44 | 11.45 | 4.48 | 55.39 | 0.54 | 103.90 | 3.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Félix, C.; Félix, R.; Carmona, A.M.; Januário, A.P.; Dias, P.D.M.; Vicente, T.F.L.; Silva, J.; Alves, C.; Pedrosa, R.; Novais, S.C.; et al. Cosmeceutical Potential of Grateloupia turuturu: Using Low-Cost Extraction Methodologies to Obtain Added-Value Extracts. Appl. Sci. 2021, 11, 1650. https://doi.org/10.3390/app11041650
Félix C, Félix R, Carmona AM, Januário AP, Dias PDM, Vicente TFL, Silva J, Alves C, Pedrosa R, Novais SC, et al. Cosmeceutical Potential of Grateloupia turuturu: Using Low-Cost Extraction Methodologies to Obtain Added-Value Extracts. Applied Sciences. 2021; 11(4):1650. https://doi.org/10.3390/app11041650
Chicago/Turabian StyleFélix, Carina, Rafael Félix, Ana M. Carmona, Adriana P. Januário, Pedro D.M. Dias, Tânia F.L. Vicente, Joana Silva, Celso Alves, Rui Pedrosa, Sara C. Novais, and et al. 2021. "Cosmeceutical Potential of Grateloupia turuturu: Using Low-Cost Extraction Methodologies to Obtain Added-Value Extracts" Applied Sciences 11, no. 4: 1650. https://doi.org/10.3390/app11041650
APA StyleFélix, C., Félix, R., Carmona, A. M., Januário, A. P., Dias, P. D. M., Vicente, T. F. L., Silva, J., Alves, C., Pedrosa, R., Novais, S. C., & Lemos, M. F. L. (2021). Cosmeceutical Potential of Grateloupia turuturu: Using Low-Cost Extraction Methodologies to Obtain Added-Value Extracts. Applied Sciences, 11(4), 1650. https://doi.org/10.3390/app11041650