A Strategy for Achieving Smooth Filamentation Cutting of Transparent Materials with Ultrafast Lasers
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods and Materials
3. Model
3.1. Typical Durations of the Processes of Filament Creation and Relaxation of Its Energy
3.2. Strategy for Obtaining Better Smoothness of Cut Walls
3.2.1. Laser Pulse Energy
3.2.2. Laser Pulse Duration
3.2.3. Step of Filaments Following
3.2.4. Threshold Modification Temperature for the Thermal Mechanism
3.2.5. The Threshold Modification Temperature for the Mechanism of Thermally-Induced Deformation
3.2.6. The Radius of the Modification Zone under the Action of Heatwave
3.2.7. Radius of Shock-Wave Modification
3.2.8. The Pulse Repetition Rate
3.2.9. Tmod and s1 at High PRR
3.2.10. Step of Filaments following and PRR in the Approximation of “Long Time” of Energy Release
3.2.11. RT and RTD for High Pulse Repetition Rate
3.2.12. Modification Mechanism Preferable for Smooth Separation
3.3. Speed and Average Power of the Beam
3.4. LFC Throughput
- (i)
- The ratio (w − wdis)1/2/w is maximal. This takes place, as can be easily shown, at w = 2wdis;
- (ii)
- The filament radius rf is minimal, which is the case, as follows from the discussion of the expression (19) above, when using a shorter wavelength of laser radiation λ;
- (iii)
- The modification threshold wmod is minimised. When the energy transfer mechanism by heat conduction rather than by the shock wave dominates in the formation of the impact zone around the filament, it is preferable for this, as we have seen above, to use repetition frequencies in the high-frequency range (54) f ≥ f1, but not in the low-frequency range (55) f ≤ f2. In this case, the increase of the heat preservation factor η in the range f ≥ f1 following the estimates (63) and (64) leads according to the equations (66)–(68) to a decrease in the wmod by almost two times compared to the low-frequency range f ≤ f2;
- (iv)
- The energy conversion coefficients AL-P and AP-H are maximal, which emphasizes the importance of using filaments with the VED w that satisfies the conditions (12) for eliminating significant losses of filament energy to thermal radiation.
4. Discussion and Comparison with Experiments
4.1. LFC of Sapphire
4.2. LFC of Tempered Glass
4.3. LFC at very Low Average Laser Power
- (1)
- We take VED bounds as w1 = 400 kJ/cm3 and w2 = 396–480 kJ/cm3 according to calculations given in Table 1 for a very close value of rf = 0.25 μm.
- (2)
- The VED w is taken as w = 1.8wdis = 115 kJ/cm3. In this case the condition (12) w ≤ w1 is evidently fulfilled, corresponding to a significant elimination of filament energy losses for thermal emission and thus providing for a driving force and an efficiency for LFC. We put η ≈ 0.1 for the considered low-frequency range, and also take С = С2 ≈ 1.0 J/(g×K). The modification threshold according to (64) is then = 1.22 kJ/cm3.
- (3)
- The pulse energy in the material for the same filament length H = 45 μm as in Section 4.2 is from (17) E1 = 1.21 μJ, and the step of filaments following is from (66) s1 = 0.9s1max= 4.74rf = 1.16 μm.
- (4)
- LFC throughput from (93) is Ω = 43 μm2/μJ, which is noticeably lower than the value Ω ≈ 59 μm2/μJ obtained above in the high-frequency mode. From Table 3, for the limit f2, we find f2 = 0.547χ/s12, which gives f2 = 162–203 kHz for the above thermal diffusivity χ of this material.
- (5)
- We take f = 162 kHz, i.e., f ≤ f2. We then finally find the average laser power in the material and the relative velocity of the beam and target: P = 196 mW and u = 0.19 m/s.
4.4. LFC of Thick Plates
5. Conclusions
- -
- Obtaining high energy efficiency of the separation process by eliminating the energy losses of the filament due to thermal radiation. To do this, the pulse energy E1 in the material according to the model is chosen in such a way that the plasma of the filament is pumped to the VED w, which satisfies the condition w ≤ w1, or w ≥ w2. The limits of w1 and w2, for which usually w1 < w2, are determined in the model by the thermal and optical properties of the material and are numerically of the order of several hundred kJ/cm3;
- -
- Ensuring increased uniformity of the diameter of each emerging filament along its length. For this purpose, the pulse duration τ is matched with the pulse energy E1 so that the power of a single laser pulse P1 ≈ E1/τ is approximately equal to the critical power Pc for self-focusing, i.e., P1 = ΓPc, where Γ = 1–2;
- -
- Creation in the volume of the material of a continuous modified layer from the filament to the filament with the value of the volumetric energy density released in it (in [J/cm3]) not lower than the minimum (or threshold) value wmod, necessary to obtain a separation. For this purpose, the step s1 of filaments following in the material is selected in such a way that the zones of modification critical for separation from neighbour filaments join or even overlap with each other;
- -
- Formation of straight filaments of a regular shape in each of their arrays by minimising their influence on each other, i.e., minimising the heating and temperature gradient from the previous filament at the location and at the time of occurrence of the next, new filament. To do this, the PRR f of laser pulses should be selected in one of two ranges found in the model, conventionally called as high-frequency range, f ≥ f1, and low-frequency range, f ≤ f2, where the limits f1 and f2 differ by several tens of times with f1 > f2;
- -
- Formation of the impact zone from the filament without destruction in the form of scattered cracking in the solid material as a result of laser irradiation. This requires the dominance of the thermal mechanism in the formation of the impact zone radius, but not of the alternative shockwave or thermal deformation mechanisms, which just lead to scattered cracking formation in the solid material, excluding thus a smooth separation after irradiation. As the model shows, the dominance of the thermal mechanism occurs when two dimensionless criteria for material and radiation parameters are met simultaneously. It requires the use of a specific class of materials—tempered glasses, which corresponds to experimental observations of smooth cutting for these materials. On the other hand, these criteria are not met for sapphire and non-tempered glasses. In experiments, a smooth separation in LFC for these materials really is not observed.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nisar, S.; Li, L.; Sheikh, M.A. Laser glass cutting techniques—A review. J. Laser Appl. 2013, 25, 042010. [Google Scholar] [CrossRef]
- Lumley, R.M. Controlled separation of brittle materials using a laser. Am. Ceram. Soc. Bull. 1969, 48, 850–854. [Google Scholar]
- Kondratenko, V.S. Method of Splitting Nonmetallic Materials. U.S. Patent 5,609,284, 3 November 1997. [Google Scholar]
- Kumkar, M.; Bauer, L.A.; Russ, S.; Wendel, M.W.; Kleiner, J.; Grossmann, D.; Bergner, K.; Nolte, S. Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers. Proc. SPIE 2014, 8972, 897214. [Google Scholar] [CrossRef]
- Matylitsky, V.; Hendricks, F. Industrial femtosecond lasers for micro-machining applications with highest quality and efficiency. In Proceedings of the 9th International Conference on Photonic Technology LANE 2016, Fürth, Germany, 19–22 September 2016; Industrial Paper; Bayerisches Laserzentrum GmbH: Erlangen, Germany, 2016. [Google Scholar]
- Matylitsky, V.; Hendricks, F.; Patel, R. Femtosecond Laser Processing of Brittle Materials. Process Can Machine Glasses and Sapphire with High Quality. Available online: http://www.industrial-lasers.com/articles/print/volume-30/issue-3/features/femtosecond-laser-processing-of-brittle-materials.html (accessed on 9 February 2021).
- Askar’an, G.A. Action of gradient of intense electromagnetic field beam on electrons and atoms. Sov. Phys. JETP 1962, 15, 1088–1093. [Google Scholar]
- Ahmed, F.; Lee, M.S.; Sekita, H.; Sumiyoshi, T.; Kamata, M. Display glass cutting by femtosecond laser induced single shot periodic void array. Appl. Phys. A 2008, 93, 189–192. [Google Scholar] [CrossRef]
- Chin, S.L. The physics and the challenge of the propagation of powerful femtosecond laser pulses in optical media. La Phys. Can. 2004, 60, 273–281. [Google Scholar]
- Chekalin, S.V.; Kandidov, V.P. From self-focusing light beams to femtosecond laser pulse filamentation. Phys. Uspekhi 2013, 56, 123–140. [Google Scholar] [CrossRef]
- Chebbi, B.; Minko, S.; Al-Akwaa, N.; Golub, I. Remote control of extended depth of field focusing. Opt. Commun. 2010, 283, 1678–1683. [Google Scholar] [CrossRef]
- Ganin, D.V.; Lapshin, K.; Obidin, A.; Vartapetov, S. Single-pulse perforation of thin transparent dielectrics by femtosecond lasers. Appl. Phys. A 2017, 123, 219. [Google Scholar] [CrossRef]
- Bhuyan, M.K.; Velpula, P.K.; Colombier, J.-P.; Olivier, T.; Faure, N.; Stoian, R. Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams. Appl. Phys. Lett. 2014, 104, 021107. [Google Scholar] [CrossRef]
- Bhuyan, M.K.; Jedrkiewicz, O.; Sabonis, V.; Mikutis, M.; Recchia, S.; Aprea, A.; Bollani, M.; Di Trapani, P. High-speed laser-assisted cutting of strong transparent materials using picosecond Bessel beams. Appl. Phys. A 2015, 120, 443–446. [Google Scholar] [CrossRef]
- Mishchik, K.; Chassagne, B.; Javaux-Léger, C.; Hönninger, C.; Mottay, E.; Kling, R.; Lopez, J. Dash line glass- and sapphire-cutting with high power USP laser. Proc. SPIE 2016, 9740, 97400W. [Google Scholar] [CrossRef]
- Garzillo, V.; Jukna, V.; Couairon, A.; Grigutis, R.; Di Trapani, P.; Jedrkiewicz, O. Optimization of laser energy deposition for single-shot high aspect-ratio microstructuring of thick BK7 glass. J. Appl. Phys. 2016, 120, 013102. [Google Scholar] [CrossRef]
- Bergner, K.; Müller, M.; Klas, R.; Limpert, J.; Nolte, S.; Tünnerman, A. Scaling ultrashort laser pulse induced glass modifications for cleaving applications. Appl. Opt. 2018, 57, 5941–5947. [Google Scholar] [CrossRef] [PubMed]
- Lamperti, M.; Jukna, V.; Jedrkiewicz, O.; Di Trapani, P.; Stoian, R.; Itina, T.; Xie, C.; Courvoisier, F.; Couairon, A. Invited Article: Filamentary deposition of laser energy in glasses with Bessel beams. APL Photon. 2018, 3, 120805. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.A.; Herman, P.R. Method of Material Processing by Laser Filamentation. U.S. Patent 20130126573 A1, 23 May 2013. [Google Scholar]
- Mikalauskas, S.; Račiukaitis, G. Laser microfabrication in Lithuania. Ind. Las. Sol. 2016, 5, 22–27. [Google Scholar]
- Couairon, A.; Sudrie, L.; Franco, M.; Prade, B.; Mysyrowicz, A. Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses. Phys. Rev. B 2005, 71, 125435. [Google Scholar] [CrossRef]
- Gattass, R.R.; Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photon. 2008, 2, 219–225. [Google Scholar] [CrossRef]
- Bulgakova, N.M.; Stoian, R.; Rosenfeld, A.H. Laser-induced modification of transparent crystals and glasses. Quantum Electron. 2010, 40, 966–985. [Google Scholar] [CrossRef]
- Perry, M.; Stuart, B.C.; Banks, P.; Feit, M.; Yanovsky, V.; Rubenchik, A.M. Ultrashort-pulse laser machining of dielectric materials. J. Appl. Phys. 1999, 85, 6803–6810. [Google Scholar] [CrossRef] [Green Version]
- Schaffer, C.B.; Brodeur, A.; Mazur, E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas. Sci. Technol. 2001, 12, 1784–1794. [Google Scholar] [CrossRef]
- Rayner, D.M.; Naumov, A.; Corkum, P.B. Ultrashort pulse non-linear optical absorption in transparent media. Opt. Express 2005, 13, 3208–3217. [Google Scholar] [CrossRef] [PubMed]
- Juodkazis, S.; Nishimura, K.; Tanaka, S.; Misawa, H.; Gamaly, E.; Luther-Davies, B.; Hallo, L.; Nicolai, P.; Tikhonchuk, V.T. Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal: Evidence of Multimegabar Pressures. Phys. Rev. Lett. 2006, 96, 166101. [Google Scholar] [CrossRef] [Green Version]
- Bulgakova, N.M.; Burakov, I.M.; Meshcheryakov, Y.P.; Stoian, R.; Rosenfeld, A.; Hertel, I.V. Theoretical models and quali-tative interpretations of fs laser material processing. J. Laser Micro/Nanoeng. 2007, 2, 76–86. [Google Scholar] [CrossRef]
- Bergé, L.; Skupin, S.; Nuter, R.; Kasparian, J.; Wolf, J.-P. Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Prog. Phys. 2007, 70, 1633–1713. [Google Scholar] [CrossRef] [Green Version]
- Kononenko, V.V.; Zavedeev, E.V.; I Latushko, M.; Konov, V. Observation of fs laser-induced heat dissipation in diamond bulk. Laser Phys. Lett. 2013, 10, 36003. [Google Scholar] [CrossRef]
- Mizeikis, V.; Juodkazis, S.; Balčiūnas, T.; Misawa, H.; Kudryashov, S.; Zvorykin, V.; Ionin, A. Optical and ultrasonic signatures of femtosecond pulse filamentation in fused silica. J. Appl. Phys. 2009, 105, 123106. [Google Scholar] [CrossRef]
- Gamaly, E. The physics of ultra-short laser interaction with solids at non-relativistic intensities. Phys. Rep. 2011, 508, 91–243. [Google Scholar] [CrossRef]
- Butkus, S.; Paipulas, D.; Sirutkaitis, R.; Gaižauskas, E.; Sirutkaitis, V. Rapid Cutting and Drilling of Transparent Materials via Femtosecond Laser Filamentation. J. Laser Micro/Nanoeng. 2014, 9, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Varkentina, N.; Sanner, N.; Lebugle, M.; Sentis, M.; Utéza, O. Absorption of a single 500 fs laser pulse at the surface of fused silica: Energy balance and ablation efficiency. J. Appl. Phys. 2013, 114, 173105. [Google Scholar] [CrossRef]
- Carr, C.W.; Radousky, H.B.; Rubenchik, A.M.; Feit, M.; Demos, S.G. Localized Dynamics during Laser-Induced Damage in Optical Materials. Phys. Rev. Lett. 2004, 92, 087401. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, C.B.; García, J.; Mazur, E. Bulk heating of transparent materials using a high-repetition-rate femtosecond laser. Appl. Phys. A 2003, 76, 351–354. [Google Scholar] [CrossRef]
- Caulier, O.D.; Mishchik, K.; Chimier, B.; Skupin, S.; Bourgeade, A.; Léger, C.J.; Kling, R.; Honninger, C.; Lopez, J.J.; Tikhonchuk, V.T.; et al. Femtosecond laser pulse train interaction with dielectric materials. Appl. Phys. Lett. 2015, 107, 181110. [Google Scholar] [CrossRef]
- Eaton, S.M.; Zhang, H.; Ng, M.L.; Li, J.; Chen, W.-J.; Ho, S.; Herman, P.R. Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides. Opt. Express 2008, 16, 9443–9458. [Google Scholar] [CrossRef] [PubMed]
- Tokarev, V.N.; Melnikov, I.V. Elimination of thermal emission losses in laser filamentation cutting transparent materials. Laser Phys. Lett. 2021, in press. [Google Scholar]
- Tokarev, V.N.; Shmakov, V.A.; Yamschikov, V.A.; Khasaya, R.R.; Mikolutskiy, S.I.; Khomich, V.Y. Suppression of laser plasma melting side walls in laser drilling high aspect ratio micro-vias. In Proceedings of the 29th ICALEO, Anaheim, CA, USA, 26–30 September 2010; Laser Institute of America: Anaheim, CA, USA, 2010; pp. 966–975. [Google Scholar]
- Tokarev, V.N.; A Cheshev, E.; Bezotosnyi, V.V.; Khomich, V.Y.; I Mikolutskiy, S.; Vasil’Yeva, N.V. Optimization of plasma effect in laser drilling of high aspect ratio microvias. Laser Phys. 2015, 25, 56003. [Google Scholar] [CrossRef]
- Audebert, P.; Daguzan, P.; Dos Santos, A.; Gauthier, J.C.; Geindre, J.P.; Guizard, S.; Hamoniaux, G.; Krastev, K.; Martin, P.; Petite, G.; et al. Space-Time Observation of an Electron Gas in SiO2. Phys. Rev. Lett. 1994, 73, 1990–1993. [Google Scholar] [CrossRef]
- Do, B.T.; Phillips, M.C.; Miller, P.A.; Kimmel, M.W.; Britsch, J.; Cho, S.-H. Properties of optical breakdown in BK7 glass induced by an extended-cavity femtosecond laser oscillator. Opt. Express 2009, 17, 2739–2755. [Google Scholar] [CrossRef]
- Saito, K.; Ikushima, A.J. Absorption edge in silica glass. Phys. Rev. B 2000, 62, 8584–8587. [Google Scholar] [CrossRef]
- Glezer, E.N.; Siegal, Y.; Huang, L.; Mazur, E. Laser-induced band-gap collapse in GaAs. Phys. Rev. B 1995, 51, 6959–6970. [Google Scholar] [CrossRef]
- Momgaudis, B.; Kudriasov, V.; Vengris, M.; Melninkaitis, A. Quantitative assessment of nonlinearly absorbed energy in fused silica via time-resolved digital holography. Opt. Express 2019, 27, 7699–7711. [Google Scholar] [CrossRef] [PubMed]
- Mauclair, C.; Mermillod-Blondin, A.; Mishchik, K.; Bonse, J.; Rosenfeld, A.; Colombier, J.P.; Stoian, R. Excitation and relaxation dynamics in ultrafast laser irradiated optical glasses. High Power Laser Sci. Eng. 2016, 4, E46. [Google Scholar] [CrossRef] [Green Version]
- Martin, P.; Guizard, S.; Daguzan, P.; Petite, G.; D’Oliveira, P.; Meynadier, P.; Perdrix, M. Subpicosecond study of carrier trapping dynamics in wide-band-gap crystals. Phys. Rev. B 1997, 55, 5799–5810. [Google Scholar] [CrossRef]
- Kulikov, N.S. Thermal Dissociation of Compounds; Metallurgiya: Moscow, Russia, 1969. [Google Scholar]
- Hicks, D.G.; Boehly, T.R.; Eggert, J.H.; Miller, J.E.; Celliers, P.M.; Collins, G.W. Dissociation of Liquid Silica at High Pressures and Temperatures. Phys. Rev. Lett. 2006, 97, 025502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, D.A.; Corey, E.M. A new global equation of state model for hot, dense matter. J. Appl. Phys. 1995, 78, 3748–3755. [Google Scholar] [CrossRef]
- Grehn, M.; Seuthe, T.; Höfner, M.; Griga, N.; Theiss, C.; Mermillod-Blondin, A.; Eberstein, M.; Eichler, H.; Bonse, J. Femtosecond-laser induced ablation of silicate glasses and the intrinsic dissociation energy. Opt. Mater. Express 2014, 4, 689–700. [Google Scholar] [CrossRef]
- Johnson, A.G.; Scholes, S.R.; Simpson, H.E. Volume Expansion of Glass at High Temperatures. J. Am. Ceram. Soc. 1950, 33, 144–147. [Google Scholar] [CrossRef]
- Klyuev, V.P. Dependence of the Dilatometric Properties of Glasses on Their Structure: 1. Borate, Aluminoborate, and Lead-Containing Glasses. Glass Phys. Chem. 2005, 31, 749–759. [Google Scholar] [CrossRef]
- Corning® Gorilla® Glass 5, Product Information. 2019. Available online: https://www.corning.com/microsites/csm/gorillaglass/PI_Sheets/CorningGorillaGlass5PISheetRevB.pdf (accessed on 16 September 2019).
- Corning® EAGLE XG™. AMLCD Glass Substrates Material Information. 2019. Available online: https://www.corning.com/media/worldwide/cdt/documents/EAGLEPISheet2017.pdf (accessed on 16 September 2019).
- Dobrovinskaya, E.R.; Lytvynov, L.A.; Pishchik, V. Sapphire: Material, Manufacturing, Applications; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- Jamke, E.; Emde, F.; Lesch, F. Special Functions. Formulae, Plots, Tables; Sedov, L.I., Ed.; Transl. of the 6th German Edition; Nauka: Moscow, Russia, 1961. [Google Scholar]
- Tokarev, V.N.; Kaplan, A.F.H. An analytical modeling of time dependent pulsed laser melting. J. Appl. Phys. 1999, 86, 2836–2846. [Google Scholar] [CrossRef]
- Amina; Ji, L.; Yan, T.; Wang, Y.; Li, L. Characteristics of 1064 nm picosecond laser induced filamentary tracks and damages in sapphire. Opt. Laser Technol. 2019, 116, 232–238. [Google Scholar] [CrossRef]
Material | w1 (kJ/cm3) | w2 (kJ/cm3) | ||
---|---|---|---|---|
rf = 0.25 μm | rf = 0.5 μm | rf = 1.5 μm | ||
Corning Gorilla Glass 5 Eagle XG@Display glass Quartz glass Sapphire | 400 396 356 1070 | 336 322 296 860 | 248 244 226 620 | 396–480 460–540 640–750 1020–1230 |
Parameter | Fused Silica | Corning EAGLE XGTM | Corning Gorilla Glass 5 | Sapphire |
---|---|---|---|---|
Mean specific heat С2, J/(g∙К) | 1.09 | 1.07 | 1.0 | 1.2 |
Mean density ρ2, g/cm3 | 2.2 | 2.38 | 2.43 | 3.97 |
Strain point Тstrain, °С | 670–900 | 669 | 571 | - |
Melting point Тmelt, °С | - | - | - | 2050 |
Thermal expansion coefficient αT, 10−6 K−1 | 1.3 | 3.55 | 7.9 | 5.5 |
Young modulus Y, GPa | 73.6 | 73.6 | 76.7 | 345–470 |
Compression strength σc, GPa | 0.59 | 0.6 | 1.8 ÷ 2.4 | 2.4–3.0 |
a1 | a2 | ||
---|---|---|---|
s1/ R | 2 | 3.02 | 0.175 |
1.8 | 3.33 | 0.137 | |
1.6 | 3.66 | 0.105 | |
1.4 | 4.02 | 0.0779 | |
1.2 | 4.43 | 0.0560 |
Quartz Glass | Corning EAGLE XGTM | Corning Gorilla Glass 5 | Sapphire | ||
---|---|---|---|---|---|
Amorphous material | 0.11–0.14 | 0.28 | 0.14–0.19 | - | |
1.5–2.0 | 1.6 | 0.32–0.42 | - | ||
Crystalline material | - | - | - | 1.3–2.2 | |
- | - | - | 1.5–1.9 |
Pulse Energy E1, µJ | Pulse Duration τ, ps | Scanning Step s1, µm | Repetition Rate Limit f2, kHz | Repetition Rate f, kHz | Average Power P, W | Scanning Speed u, m/s | |
---|---|---|---|---|---|---|---|
Experiment [20] | <26.7 | - | 4 | - | 75 | <2 | 0.30 |
Model | 19.5 | 3.5–7.0 | 4.1 | f2 = 49–78 | 75 | 1.5 (f = 75 kHz) | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tokarev, V.N.; Melnikov, I.V. A Strategy for Achieving Smooth Filamentation Cutting of Transparent Materials with Ultrafast Lasers. Appl. Sci. 2021, 11, 1732. https://doi.org/10.3390/app11041732
Tokarev VN, Melnikov IV. A Strategy for Achieving Smooth Filamentation Cutting of Transparent Materials with Ultrafast Lasers. Applied Sciences. 2021; 11(4):1732. https://doi.org/10.3390/app11041732
Chicago/Turabian StyleTokarev, Vladimir N., and Igor V. Melnikov. 2021. "A Strategy for Achieving Smooth Filamentation Cutting of Transparent Materials with Ultrafast Lasers" Applied Sciences 11, no. 4: 1732. https://doi.org/10.3390/app11041732
APA StyleTokarev, V. N., & Melnikov, I. V. (2021). A Strategy for Achieving Smooth Filamentation Cutting of Transparent Materials with Ultrafast Lasers. Applied Sciences, 11(4), 1732. https://doi.org/10.3390/app11041732