Effect of Pretreatment with Low-Frequency Ultrasound on Quality Parameters in Gulupa (Passiflora edulis Sims) Pulp
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Vegetal Material
2.2. Treatments
2.3. Titratable Acidity and pH
2.4. Soluble Solids (SS)
2.5. Trolox Equivalent Antioxidant Capacity (TEAC)
2.5.1. ABTS•+ (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) Cationic Radical
2.5.2. DPPH· (2,2-diphenyl-1-picrilhydrazil) Radical Scavenging Assay
2.6. Determination of Ascorbic Acid
2.7. Color Determination
2.8. Microbiological Analysis
2.9. Statistic Analysis
3. Results and Discussions
3.1. Titrable Acidity and pH
3.2. Soluble Solids (SS)
3.3. Trolox-Equivalent Antioxidant Capacity (TEAC)
3.4. Ascorbic Acid Content
3.5. Color Measurements
3.6. Microbiological Analysis
3.7. Additional remarks
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ocampo Pérez, J.; Wyckhuys, K. (Eds.) Tecnología Para El Cultivo de la Gulupa (Passiflora Edulis F Edulis Sims) en Colombia, 1st ed.; Centro de Bio-Sistemas de la Universidad Jorge Tadeo Lozano, Centro Internacional de Agricultura-CIAT y Ministerio de Agricultura y Desarrollo Rural: Bogotá, Colombia, 2012; ISBN 978-958-725-092-3. [Google Scholar]
- Noreña Triana, M.E. Cadena de Pasifloras. Indicadores e Instrumentos; Ministerio de Agricultura y Desarrollo Rural: Bogotá, Colombia, 2020. [Google Scholar]
- Pinzón, I.M.D.P.; Fischer, G.; Corredor, G. Determinación de los estados de madurez del fruto de la gulupa (Passiflora edulis Sims). Agron. Colomb. 2007, 25, 83–95. [Google Scholar]
- Dhawan, K.; Dhawan, S.; Sharma, A. Passiflora: A review update. J. Ethnopharmacol. 2004, 94, 1–23. [Google Scholar] [CrossRef]
- Jiménez, A.M.; Sierra, C.A.; Rodríguez-Pulido, F.J.; González-Miret, M.L.; Heredia, F.J.; Osorio, C. Physicochemical characterisation of gulupa (Passiflora edulis Sims. fo edulis) fruit from Colombia during the ripening. Food Res. Int. 2011, 44, 1912–1918. [Google Scholar] [CrossRef]
- Acevedo, M.F.; Harvey, D.R.; Palis, F.G. Food security and the environment: Interdisciplinary research to increase productivity while exercising environmental conservation. Glob. Food Secur. 2018, 16, 127–132. [Google Scholar] [CrossRef]
- Alarcon-Rojo, A.D.; Carrillo-Lopez, L.M.; Reyes-Villagrana, R.; Huerta-Jiménez, M.; Garcia-Galicia, I.A. Ultrasound and meat quality: A review. Ultrason. Sonochem. 2019, 55, 369–382. [Google Scholar] [CrossRef]
- Chemat, F.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef] [PubMed]
- Piyasena, P.; Mohareb, E.; McKellar, R.C. Inactivation of microbes using ultrasound: A review. Int. J. Food Microbiol. 2003, 87, 207–216. [Google Scholar] [CrossRef]
- Bhavya, M.L.; Hebbar, H.U. Sono-photodynamic inactivation of Escherichia coli and Staphylococcus aureus in orange juice. Ultrason. Sonochem. 2019, 57, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Fonteles, T.V.; Costa, M.G.M.; de Jesus, A.L.T.; de Miranda, M.R.A.; Fernandes, F.A.N.; Rodrigues, S. Power ultrasound processing of cantaloupe melon juice: Effects on quality parameters. Food Res. Int. 2012, 48, 41–48. [Google Scholar] [CrossRef]
- Bhargava, N.; Mor, R.S.; Kumar, K.; Sharanagat, V.S. Advances in application of ultrasound in food processing: A review. Ultrason. Sonochem. 2020, 105293. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, S.J.; Mierzwa, D.; Stasiak, M. Ultrasound-assisted convective drying of apples at different process conditions. Dry. Technol. 2017, 35, 939–947. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, L.; Qiao, Y.; Wang, C.; Shi, D.; An, K.; Hu, J. Effects of ultrahigh pressure and ultrasound pretreatments on properties of strawberry chips prepared by vacuum-freeze drying. Food Chem. 2020, 303, 125386. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Zhou, X.; Zhang, S.; Zhou, N. Influence of ultrasound-assisted nucleation on freeze-drying of carrots. Dry. Technol. 2016, 34, 1196–1203. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, M.; Xu, B.; Adhikari, B.; Sun, J. The principles of ultrasound and its application in freezing related processes of food materials: A review. Ultrason. Sonochem. 2015, 27, 576–585. [Google Scholar] [CrossRef] [PubMed]
- De la Fuente-Blanco, S.; De Sarabia, E.R.-F.; Acosta-Aparicio, V.M.; Blanco-Blanco, A.; Gallego-Juárez, J.A. Food drying process by power ultrasound. Ultrasonics 2006, 44, e523–e527. [Google Scholar] [CrossRef] [PubMed]
- Merone, D.; Colucci, D.; Fissore, D.; Sanjuan, N.; Carcel, J.A. Energy and environmental analysis of ultrasound-assisted atmospheric freeze-drying of food. J. Food Eng. 2020, 283, 110031. [Google Scholar] [CrossRef]
- Yildiz, G.; Izli, G. The effect of ultrasound pretreatment on quality attributes of freeze-dried quince slices: Physical properties and bioactive compounds. J. Food Process Eng. 2019, 42, e13223. [Google Scholar] [CrossRef]
- Rodríguez, Ó.; Eim, V.; Rosselló, C.; Femenia, A.; Cárcel, J.A.; Simal, S. Application of power ultrasound on the convective drying of fruits and vegetables: Effects on quality. J. Sci. Food Agric. 2018, 98, 1660–1673. [Google Scholar] [CrossRef]
- Žlabur, J.Š.; Colnar, D.; Voća, S.; Lorenzo, J.M.; Munekata, P.E.S.; Barba, F.J.; Dobričević, N.; Galić, A.; Dujmić, F.; Pliestić, S. Effect of ultrasound pretreatment and drying method on specialized metabolites of honeyberry fruits (Lonicera caerulea var. kamtschatica). Ultrason. Sonochem. 2019, 56, 372–377. [Google Scholar] [CrossRef]
- Colucci, D.; Fissore, D.; Rossello, C.; Carcel, J.A. On the effect of ultrasound-assisted atmospheric freeze-drying on the antioxidant properties of eggplant. Food Res. Int. 2018, 106, 580–588. [Google Scholar] [CrossRef]
- Ren, F.; Perussello, C.A.; Zhang, Z.; Kerry, J.P.; Tiwari, B.K. Impact of ultrasound and blanching on functional properties of hot-air dried and freeze dried onions. LWT 2018, 87, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Soltani Firouz, M.; Farahmandi, A.; Hosseinpour, S. Recent advances in ultrasound application as a novel technique in analysis, processing and quality control of fruits, juices and dairy products industries: A review. Ultrason. Sonochem. 2019, 57, 73–88. [Google Scholar] [CrossRef]
- ICONTEC NTC 5468:2012. Jugo (Zumo), Pulpa, Néctar de Frutas y Sus Concentrados; Instituto Colombiano de Normas Técnicas y Certificación: Bogotá, Colombia, 2012; 21p. [Google Scholar]
- Wang, J.; Vanga, S.K.; Raghavan, V. High-intensity ultrasound processing of kiwifruit juice: Effects on the ascorbic acid, total phenolics, flavonoids and antioxidant capacity. LWT 2019, 107, 299–307. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000; ISBN 0935584544. [Google Scholar]
- Grande-Tovar, C.D.; Delgado-Ospina, J.; Puerta, L.F.; Rodríguez, G.C.; Sacchetti, G.; Paparella, A.; Chaves-López, C. Bioactive micro-constituents of ackee arilli (Blighia sapida K.D. Koenig). An. Acad. Bras. Cienc. 2019, 91, e20180140. [Google Scholar] [CrossRef]
- Villa-Rodríguez, J.A.; Molina-Corral, F.J.; Ayala-Zavala, J.F.; Olivas, G.I.; González-Aguilar, G.A. Effect of maturity stage on the content of fatty acids and antioxidant activity of “Hass” avocado. Food Res. Int. 2011, 44, 1231–1237. [Google Scholar] [CrossRef]
- Pertuzatti, P.B.; Sganzerla, M.; Jacques, A.C.; Barcia, M.T.; Zambiazi, R.C. Carotenoids, tocopherols and ascorbic acid content in yellow passion fruit (Passiflora edulis) grown under different cultivation systems. LWT Food Sci. Technol. 2015, 64, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Bhat, R.; Kamaruddin, N.S.B.C.; Min-Tze, L.; Karim, A.A. Sonication improves kasturi lime (Citrus microcarpa) juice quality. Ultrason. Sonochem. 2011, 18, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Abid, M.; Jabbar, S.; Wu, T.; Hashim, M.M.; Hu, B.; Lei, S.; Zhang, X.; Zeng, X. Effect of ultrasound on different quality parameters of apple juice. Ultrason. Sonochem. 2013, 20, 1182–1187. [Google Scholar] [CrossRef] [PubMed]
- Franco, G.; Cartagena, J.; Correa, G.; Lobo, M. Physical characterization of gulupa fruits (Passiflora edulis SIMS) during ripening and posthaverst. Rev. Agron. 2013, 21, 48–62. [Google Scholar]
- Menéndez Aguirre, O.; Evangelista Lozano, S.; Arenas Ocampo, M.; Bermúdez Torres, K.; Martínez, A.D.V.; Jimenez Aparicio, A. Cambios en la actividad de α-Amilasa, pectinmetilesterasa y poligalacturonasa durante la maduración del maracuyá amarillo (passiflora edulis Var. flavicarpa degener). Interciencia 2006, 31, 728–733. [Google Scholar]
- Etienne, A.; Génard, M.; Lobit, P.; Mbeguié-A-Mbéguié, D.; Bugaud, C. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. Exp. Bot. 2013, 64, 1451–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gani, A.; Baba, W.N.; Ahmad, M.; Shah, U.; Khan, A.A.; Wani, I.A.; Masoodi, F.A.; Gani, A. Effect of ultrasound treatment on physico-chemical, nutraceutical and microbial quality of strawberry. LWT Food Sci. Technol. 2016, 66, 496–502. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Ye, J.; Vanga, S.K.; Raghavan, V. Influence of high-intensity ultrasound on bioactive compounds of strawberry juice: Profiles of ascorbic acid, phenolics, antioxidant activity and microstructure. Food Control 2019, 96, 128–136. [Google Scholar] [CrossRef]
- Cruz-Cansino, N.D.S.; Reyes-Hernández, I.; Delgado-Olivares, L.; Jaramillo-Bustos, D.P.; Ariza-Ortega, J.A.; Ramírez-Moreno, E. Effect of ultrasound on survival and growth of Escherichia coli in cactus pear juice during storage. Braz. J. Microbiol. 2016, 47, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Ordóñez-Santos, L.E.; Martínez-Girón, J.; Arias-Jaramillo, M.E. Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chem. 2017, 233, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Adiamo, O.Q.; Ghafoor, K.; Al-Juhaimi, F.; Babiker, E.E.; Mohamed Ahmed, I.A. Thermosonication process for optimal functional properties in carrot juice containing orange peel and pulp extracts. Food Chem. 2018, 245, 79–88. [Google Scholar] [CrossRef]
- Tiwari, B.K.; O’Donnell, C.P.; Cullen, P.J. Effect of sonication on retention of anthocyanins in blackberry juice. J. Food Eng. 2009, 93, 166–171. [Google Scholar] [CrossRef]
- Saeeduddin, M.; Abid, M.; Jabbar, S.; Wu, T.; Hashim, M.M.; Awad, F.N.; Hu, B.; Lei, S.; Zeng, X. Quality assessment of pear juice under ultrasound and commercial pasteurization processing conditions. LWT Food Sci. Technol. 2015, 64, 452–458. [Google Scholar] [CrossRef]
- Walkling-Ribeiro, M.; Noci, F.; Cronin, D.A.; Lyng, J.G.; Morgan, D.J. Shelf life and sensory evaluation of orange juice after exposure to thermosonication and pulsed electric fields. Food Bioprod. Process. 2009, 87, 102–107. [Google Scholar] [CrossRef]
- Franco, G.; Cartagena, V.J.R.; Correa, L.G.; Rojano, B.; Piedrahita, C.A. Antioxidant activity of Passiflora edulis Sims (purple passion fruit) juice in the postharvest period. Rev. Cuba. Plantas Med. 2014, 19, 154–166. [Google Scholar]
- Saravanan, S.; Parimelazhagan, T. In vitro antioxidant, antimicrobial and anti-diabetic properties of polyphenols of Passiflora ligularis Juss. fruit pulp. Food Sci. Hum. Wellness 2014, 3, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Sasikala, V.; Saravana, S.; Parimelazhagan, T. Evaluation of antioxidant potential of different parts of wild edible plant Passiflora foetida L. J. Appl. Pharm. Sci. 2011, 1, 89–96. [Google Scholar]
- Tomadoni, B.; Cassani, L.; Viacava, G.; Moreira, M.D.R.; Ponce, A. Effect of ultrasound and storage time on quality attributes of strawberry juice. J. Food Process Eng. 2017, 40, e12533. [Google Scholar] [CrossRef]
- Ramos dos Reis, L.C.; Pesamosca Facco, E.M.; Flôres, S.H.; de Oliveira Rios, A. Stability of functional compounds and antioxidant activity of fresh and pasteurized orange passion fruit (Passiflora caerulea) during cold storage. Food Res. Int. 2018, 106, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Piljac-Žegarac, J.; Valek, L.; Martinez, S.; Belščak, A. Fluctuations in the phenolic content and antioxidant capacity of dark fruit juices in refrigerated storage. Food Chem. 2009, 113, 394–400. [Google Scholar] [CrossRef]
- Franco, M.N.; Galeano-Díaz, T.; López, Ó.; Fernández-Bolaños, J.G.; Sánchez, J.; De Miguel, C.; Gil, M.V.; Martín-Vertedor, D. Phenolic compounds and antioxidant capacity of virgin olive oil. Food Chem. 2014, 163, 289–298. [Google Scholar] [CrossRef]
- Aguilar, K.; Garvín, A.; Ibarz, A.; Augusto, P.E.D. Ascorbic acid stability in fruit juices during thermosonication. Ultrason. Sonochem. 2017, 37, 375–381. [Google Scholar] [CrossRef]
- Gómez-López, V.M.; Buitrago, M.E.; Tapia, M.S.; Martínez-Yépez, A. Effect of ultrasonication on microbial quality, colour, and ascorbic acid content of passion-fruit juice during storage. Acta Aliment. 2017, 46, 470–480. [Google Scholar] [CrossRef] [Green Version]
- Tanner, D. Impacts of Storage on Food Quality. Ref. Modul. Food Sci. 2016, 1–4. [Google Scholar] [CrossRef]
- Valero, M.; Recrosio, N.; Saura, D.; Muñoz, N.; Martí, N.; Lizama, V. Effects of ultrasonic treatments in orange juice processing. J. Food Eng. 2007, 80, 509–516. [Google Scholar] [CrossRef]
- Lee, H.S.; Coates, G.A. Effect of thermal pasteurization on Valencia orange juice color and pigments. LWT Food Sci. Technol. 2003, 36, 153–156. [Google Scholar] [CrossRef]
- Cortés, C.; Esteve, M.J.; Frígola, A. Color of orange juice treated by High Intensity Pulsed Electric Fields during refrigerated storage and comparison with pasteurized juice. Food Control 2008, 19, 151–158. [Google Scholar] [CrossRef]
- Sandi, D.; Paes Chaves, J.B.; Gomes de Sousa, A.C.; Parreiras, J.F.M.; Coelho da Silva, M.T.; Lessa Constant, P.B. Hunter color dimensions, sugar content and volatile compounds in pasteurized yellow passion fruit juice (Passiflora edulis var. flavicarpa) during storage. Braz. Arch. Biol. Technol. 2004, 47, 233–245. [Google Scholar] [CrossRef]
- Choi, M.H.; Kim, G.H.; Lee, H.S. Effects of ascorbic acid retention on juice color and pigment stability in blood orange (Citrus sinensis) juice during refrigerated storage. Food Res. Int. 2002, 35, 753–759. [Google Scholar] [CrossRef]
- Abdullah, N.; Chin, N.L. Application of Thermosonication Treatment in Processing and Production of High Quality and Safe-to-Drink Fruit Juices. Agric. Agric. Sci. Procedia 2014, 2, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Zinoviadou, K.G.; Galanakis, C.M.; Brnčić, M.; Grimi, N.; Boussetta, N.; Mota, M.J.; Saraiva, J.A.; Patras, A.; Tiwari, B.; Barba, F.J. Fruit juice sonication: Implications on food safety and physicochemical and nutritional properties. Food Res. Int. 2015, 77, 743–752. [Google Scholar] [CrossRef]
- Režek Jambrak, A.; Šimunek, M.; Evačić, S.; Markov, K.; Smoljanić, G.; Frece, J. Influence of high power ultrasound on selected moulds, yeasts and Alicyclobacillus acidoterrestris in apple, cranberry and blueberry juice and nectar. Ultrasonics 2018, 83, 3–17. [Google Scholar] [CrossRef]
- Khandpur, P.; Gogate, P.R. Effect of novel ultrasound based processing on the nutrition quality of different fruit and vegetable juices. Ultrason. Sonochem. 2015, 27, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.; Zhang, M.; Jiang, F. Ultrasound treatment to modified atmospheric packaged fresh-cut cucumber: Influence on microbial inhibition and storage quality. Ultrason. Sonochem. 2019, 54, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Adekunte, A.O.; Tiwari, B.K.; Cullen, P.J.; Scannell, A.G.M.; O’Donnell, C.P. Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chem. 2010, 122, 500–507. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Campaniello, D.; Sinigaglia, M.; Corbo, M.R. Combination of ultrasound and antimicrobial compounds towards Pichia spp. and Wickerhamomyces anomalus in pineapple juice. LWT Food Sci. Technol. 2015, 64, 616–622. [Google Scholar] [CrossRef]
- Jalilzadeh, A.; Hesari, J.; Peighambardoust, S.H.; Javidipour, I. The effect of ultrasound treatment on microbial and physicochemical properties of Iranian ultrafiltered feta-type cheese. J. Dairy Sci. 2018, 101, 5809–5820. [Google Scholar] [CrossRef] [PubMed]
- Desai, V.; Shenoy, M.A.; Gogate, P.R. Degradation of polypropylene using ultrasound-induced acoustic cavitation. Chem. Eng. J. 2008, 140, 483–487. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Guo, S.; Li, H. Mechanochemical degradation kinetics of high-density polyethylene melt and its mechanism in the presence of ultrasonic irradiation. Ultrason. Sonochem. 2005, 12, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Pilevar, Z.; Bahrami, A.; Beikzadeh, S.; Hosseini, H.; Jafari, S.M. Migration of styrene monomer from polystyrene packaging materials into foods: Characterization and safety evaluation. Trends Food Sci. Technol. 2019, 91, 248–261. [Google Scholar] [CrossRef]
Power (kHz) | Time (min) | Days after Treatment | |||||
---|---|---|---|---|---|---|---|
0 | 4 | 8 | 12 | 16 | 20 | ||
Control | 2.81 ± 0.02 | 2.80 ± 0.11 | 2.80 ± 0.01 | 2.76 ± 0.01 | 2.76 ± 0.01 | 2.77 ± 0.03 | |
30 | 10 | 2.72 ± 0.01 | 2.79 ± 0.01 | 2.75 ± 0.02 | 2.73 ± 0.01 | 2.78 ± 0.02 | 2.74 ± 0.01 |
20 | 2.77 ± 0.01 | 2.80 ± 0.03 | 2.78 ± 0.01 | 2.76 ± 0.01 | 2.80 ± 0.01 | 2.81 ± 0.02 | |
30 | 2.86 ± 0.02 | 2.74 ± 0.01 | 2.80 ± 0.01 | 2.77 ± 0.01 | 2.78 ± 0.01 | 2.73 ± 0.01 | |
40 | 10 | 2.81 ± 0.01 | 2.76 ± 0.01 | 2.78 ± 0.02 | 2.74 ± 0.01 | 2.79 ± 0.01 | 2.75 ± 0.02 |
20 | 2.76 ± 0.02 | 2.75 ± 0.02 | 2.76 ± 0.01 | 2.72 ± 0.01 | 2.77 ± 0.01 | 2.77 ± 0.01 | |
30 | 2.81 ± 0.01 | 2.74 ± 0.01 | 2.77 ± 0.01 | 2.78 ± 0.01 | 2.80 ± 0.02 | 2.78 ± 0.01 |
Power (kHz) | Time (min) | Days after Treatment | |||||
---|---|---|---|---|---|---|---|
0 | 4 | 8 | 12 | 16 | 20 | ||
Control | 4.4 ± 0.2aA | 5.5 ± 0.1bC | 5.6 ± 0.2bcC | 5.5 ± 0.2bB | 5.7 ± 0.1cB | 5.9 ± 0.1dB | |
30 | 10 | 4.3 ± 0.2aA | 5.0 ± 0.2bA | 5.3 ± 0.3bB | 5.4 ± 0.1bcB | 5.4 ± 0.1bcA | 5.5 ± 0.1cA |
20 | 4.3 ± 0.2aA | 5.2 ± 0.1bA | 5.4 ± 0.4bcBC | 5.4 ± 0.3bcB | 5.3 ± 0.2bA | 5.6 ± 0.1cA | |
30 | 4.2 ± 0.2aA | 5.2 ± 0.1bA | 5.3 ± 0.2bB | 5.3 ± 0.1bA | 5.5 ± 0.2bcA | 5.8 ± 0.3cB | |
40 | 10 | 4.2 ± 0.3aA | 5.2 ± 0.5bAB | 5.2 ± 0.3bA | 5.1 ± 0.4bA | 5.3 ± 0.2bcA | 5.6 ± 0.3cA |
20 | 4.3 ± 0.3aA | 5.3 ± 0.8bBC | 5.0 ± 0.5bA | 5.4 ± 0.1bB | 5.4 ± 0.1bA | 5.4 ± 0.4bA | |
30 | 4.3 ± 0.2aA | 5.2 ± 0.1bA | 4.9 ± 0.4bA | 5.3 ± 0.2bcA | 5.4 ± 0.2cA | 5.7 ± 0.1dB |
Power (kHz) | Time (min) | Days after Treatment | |||||
---|---|---|---|---|---|---|---|
0 | 4 | 8 | 12 | 16 | 20 | ||
Control | 13.4 ± 0.2bB | 13.4 ± 0.1bB | 13.4 ± 0.1bB | 13.4 ± 0.1bB | 13.1 ± 0.1aB | 13.0 ± 0.1aA | |
30 | 10 | 13.6 ± 0.3aB | 13.5 ± 0.2aB | 13.3 ± 0.1aB | 13.3 ± 0.1aB | 13.4 ± 0.1aB | 13.3 ± 0.1aB |
20 | 13.5 ± 0.2aB | 13.4 ± 0.1aB | 13.3 ± 0.1aB | 13.3 ± 0.2aB | 13.4 ± 0.1aB | 13.4 ± 0.1aB | |
30 | 14.8 ± 0.1aD | 14.8 ± 0.1aD | 14.7 ± 0.1aD | 14.7 ± 0.1aD | 14.7 ± 0.1aD | 14.7 ± 0.1aD | |
40 | 10 | 12.7 ± 0.1aA | 12.8 ± 0.1aA | 12.9 ± 0.2aA | 12.9 ± 0.2aA | 12.8 ± 0.1aA | 12.8 ± 0.1aA |
20 | 13.9 ± 0.1aC | 13.8 ± 0.1aC | 13.8 ± 0.1aC | 13.8 ± 0.0aC | 13.9 ± 0.1aC | 13.9 ± 0.1aC | |
30 | 13.7 ± 0.1aC | 13.7 ± 0.1aC | 13.8 ± 0.1aC | 13.7 ± 0.1aC | 13.7 ± 0.1aC | 13.7 ± 0.1aC |
Power (kHz) | Time (min) | Days after Treatment | |||||
---|---|---|---|---|---|---|---|
0 | 4 | 8 | 12 | 16 | 20 | ||
Control | 42.7 ± 0.2cB | 42.4 ± 0.1cA | 40.9 ± 2.6bA | 40.7 ± 0.1bB | 42.9 ± 8.5cD | 21.6 ± 2.9aA | |
30 | 10 | 39.4 ± 1.1bA | 49.7 ± 4.9dC | 48.5 ± 1.5dC | 43.8 ± 4.4cB | 42.0 ± 0.2cD | 22.1 ± 3.0aA |
20 | 40.1 ± 2.3cA | 45.7 ± 3.7dB | 45.8 ± 3.8dB | 36.7 ± 3.0bA | 34.5 ± 2.3bA | 20.9 ± 2.7aA | |
30 | 42.9 ± 0.7cB | 46.6 ± 4.7dB | 48.7 ± 2.0dC | 41.0 ± 2.1bB | 38.7 ± 2.4bC | 23.0 ± 2.6aB | |
40 | 10 | 41.7 ± 1.2cB | 43.4 ± 3.4dA | 44.2 ± 2.8dB | 33.9 ± 3.2bA | 31.8 ± 2.4bA | 24.5 ± 2.1aB |
20 | 42.0 ± 1.7cB | 46.9 ± 5.8dB | 49.1 ± 3.1dC | 40.3 ± 1.5bB | 38.3 ± 3.8bC | 24.1 ± 2.8aB | |
30 | 43.1 ± 1.7cC | 46.3 ± 4.2dB | 48.3 ± 4.1dC | 40.0 ± 4.7bB | 36.6 ± 1.6bB | 23.8 ± 3.5aB |
Power (kHz) | Time (min) | Parameter Color | Days after Treatment | |||||
---|---|---|---|---|---|---|---|---|
0 | 4 | 8 | 12 | 16 | 20 | |||
Control | L* | 41 ± 0aA | 40 ± 2aA | 40 ± 2aA | 42 ± 1aB | 42 ± 2aA | 47 ± 1bC | |
30 | 10 | 49 ± 1dC | 42 ± 1bB | 42 ± 1bB | 39 ± 1aA | 44 ± 2cB | 42 ± 2bA | |
20 | 42 ± 1aA | 42 ± 2aB | 42 ± 0aB | 44 ± 1bC | 46 ± 2cC | 46 ± 1cBC | ||
30 | 46 ± 2cB | 39 ± 1aA | 39 ± 1aA | 41 ± 1bB | 42 ± 1bA | 45 ± 1cB | ||
40 | 10 | 46 ± 3aB | 46 ± 2aC | 46 ± 2aC | 46 ± 1aD | 48 ± 2aD | 53 ± 3bD | |
20 | 45 ± 3cB | 40 ± 1aA | 42 ± 1bB | 46 ± 1cD | 46 ± 1cC | 50 ± 0dD | ||
30 | 41 ± 1aA | 42 ± 2aB | 43 ± 2abB | 44 ± 2bC | 44 ± 2bB | 45 ± 3bB | ||
Control | a* | 6 ± 1aA | 8 ± 1cA | 7 ± 0bA | 5 ± 1aA | 5 ± 1aA | 8 ± 1cC | |
30 | 10 | 11 ± 1cC | 9 ± 1bB | 8 ± 1bB | 7 ± 1aB | 6 ± 1aA | 6 ± 0aB | |
20 | 7 ± 1aA | 8 ± 1bA | 9 ± 1bB | 9 ± 1bC | 6 ± 1aA | 7 ± 1aB | ||
30 | 8 ± 1bB | 8 ± 0bA | 8 ± 1bB | 7 ± 1aB | 6 ± 1aA | 7 ± 1aB | ||
40 | 10 | 11 ± 2bC | 10 ± 2bB | 10 ± 1bC | 8 ± 2aB | 6.9 ± 0.3aB | 10 ± 1bD | |
20 | 9 ± 2bB | 9 ± 0bB | 9 ± 1bB | 7 ± 3abB | 7 ± 1abB | 8 ± 1bC | ||
30 | 7 ± 1bA | 7 ± 1bA | 7 ± 1bA | 7 ± 0bB | 6 ± 1aA | 5 ± 1aA | ||
Control | b* | 20 ± 1aA | 23 ± 2bB | 23 ± 3abA | 27 ± 1cB | 27 ± 3cC | 28 ± 1dB | |
30 | 10 | 32 ± 2bD | 23 ± 1aB | 23 ± 1aA | 24 ± 1aA | 23 ± 3aAB | 23 ± 1aA | |
20 | 24 ± 1bB | 22 ± 1aB | 24 ± 2abA | 31 ± 3cC | 25 ± 1bC | 26 ± 3bB | ||
30 | 28 ± 2cC | 21 ± 0aA | 23 ± 2bA | 26 ± 1cB | 21 ± 1aA | 27 ± 2cB | ||
40 | 10 | 30 ± 2dC | 27 ± 2bC | 28 ± 2bB | 30 ± 2dC | 30 ± 2dD | 33 ± 2eD | |
20 | 28 ± 3bC | 23 ± 1aB | 24 ± 1aA | 32 ± 3bC | 23 ± 1aB | 30 ± 1bC | ||
30 | 23 ± 3bB | 20 ± 1aA | 22 ± 1bA | 23 ± 1bA | 23 ± 2bB | 22 ± 1bA | ||
Control | ΔE* | 0 | 5 ± 2aB | 5 ± 2aA | 8 ± 1bB | 8 ± 1bC | 11 ± 1cB | |
30 | 10 | 15 ± 2cC | 5 ± 1bB | 5 ± 1bA | 5 ± 1bA | 5 ± 3abB | 3 ± 1aA | |
20 | 5 ± 2aA | 4 ± 1aB | 7 ± 1bB | 12 ± 3cC | 8 ± 3bC | 8 ± 3bB | ||
30 | 10 ± 3dB | 3 ± 1abA | 4 ± 1bA | 7 ± 1cB | 2 ± 1aA | 9 ± 2dB | ||
40 | 10 | 13 ± 5bBC | 10 ± 3abC | 11 ± 3bC | 12 ± 3bC | 11 ± 1bD | 19 ± 4cD | |
20 | 10 ± 4bB | 5 ± 1aB | 7 ± 2bB | 14 ± 3cC | 4 ± 1aB | 14 ± 1cC | ||
30 | 4 ± 3abA | 2 ± 1aA | 4 ± 1bA | 5 ± 1bA | 5 ± 2bB | 5 ± 2bA |
Power (kHz) | Time (min) | Day after Treatment | |||||
---|---|---|---|---|---|---|---|
0 | 4 | 8 | 12 | 16 | 20 | ||
Control | 4.2 ± 0.2cD | 3.5 ± 0.2bC | 3.2 ± 0.2bD | 2.9 ± 0.2aC | 2.8 ± 0.2a | 2.8 ± 0.2a | |
30 | 10 | 4.2 ± 0.2dD | 2.8 ± 0.2cB | 2.6 ± 0.2bC | 2.5 ± 0.2bB | 2.0 ± 0.2a | n.d |
20 | 3.0 ± 0.2cC | 2.7 ± 0.2bB | 2.7 ± 0.2bC | 2.4 ± 0.2aAB | n.d | n.d | |
30 | 2.9 ± 0.2cC | 2.6 ± 0.2bAB | 2.5 ± 0.2abC | 2.3 ± 0.2aA | n.d | n.d | |
40 | 10 | 2.7 ± 0.2cB | 2.5 ± 0.1bA | 2.3 ± 0.2aB | 2.2 ± 0.2aA | n.d | n.d |
20 | 2.5 ± 0.3cB | 2.4 ± 0.2bA | 2.0 ± 0.2aA | n.d | n.d | n.d | |
30 | 2.1 ± 0.2A | n.d | n.d | n.d | n.d | n.d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calderón-Martínez, V.; Delgado-Ospina, J.; Ramírez-Navas, J.S.; Flórez-López, E.; Valdés-Restrepo, M.P.; Grande-Tovar, C.D.; Chaves-López, C. Effect of Pretreatment with Low-Frequency Ultrasound on Quality Parameters in Gulupa (Passiflora edulis Sims) Pulp. Appl. Sci. 2021, 11, 1734. https://doi.org/10.3390/app11041734
Calderón-Martínez V, Delgado-Ospina J, Ramírez-Navas JS, Flórez-López E, Valdés-Restrepo MP, Grande-Tovar CD, Chaves-López C. Effect of Pretreatment with Low-Frequency Ultrasound on Quality Parameters in Gulupa (Passiflora edulis Sims) Pulp. Applied Sciences. 2021; 11(4):1734. https://doi.org/10.3390/app11041734
Chicago/Turabian StyleCalderón-Martínez, Vanessa, Johannes Delgado-Ospina, Juan Sebastián Ramírez-Navas, Edwin Flórez-López, Magda Piedad Valdés-Restrepo, Carlos David Grande-Tovar, and Clemencia Chaves-López. 2021. "Effect of Pretreatment with Low-Frequency Ultrasound on Quality Parameters in Gulupa (Passiflora edulis Sims) Pulp" Applied Sciences 11, no. 4: 1734. https://doi.org/10.3390/app11041734
APA StyleCalderón-Martínez, V., Delgado-Ospina, J., Ramírez-Navas, J. S., Flórez-López, E., Valdés-Restrepo, M. P., Grande-Tovar, C. D., & Chaves-López, C. (2021). Effect of Pretreatment with Low-Frequency Ultrasound on Quality Parameters in Gulupa (Passiflora edulis Sims) Pulp. Applied Sciences, 11(4), 1734. https://doi.org/10.3390/app11041734