Fully Leveraging Deep Learning Methods for Constructing Retinal Fundus Photomontages
Abstract
:1. Introduction
2. Methods
2.1. Frame Sorting
2.1.1. Disc and Fovea Detection and Frame Categorization
2.1.2. Montage Center Frame Selection and Per-Frame Sorting
2.2. Frame Integration
2.2.1. Vessel Segmentation and Frame Preprocessing
2.2.2. Keypoint Matching Based Rigid Registration
2.2.3. Non-Rigid Registration
2.2.4. Blending
2.3. Algorithm Summary
3. Experimental Results
3.1. Dataset and Experimental Environment
3.2. Quantitative Evaluation
Algorithm 1: Retinal Fundus Photomontage Construction Using Deep Learning. |
Input: Set of fundus image frames , Trained Faster R-CNN for detecting optic disc and fovea Trained SSANet for vessel segmentation Output: Constructed photomontage , vessel map montage |
3.3. Qualitative Evaluation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cunha-Vaz, J.G. Pathophysiology of diabetic retinopathy. Br. J. Ophthalmol. 1978, 62, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Ikram, M.K.; De Jong, F.J.; Van Dijk, E.J.; Prins, N.D.; Hofman, A.; Breteler, M.M.B.; De Jong, P.T.V.M. Retinal vessel diameters and cerebral small vessel disease: The Rotterdam Scan Study. Brain 2005, 129, 182–188. [Google Scholar] [CrossRef]
- Ritt, M.; Schmieder, R.E. Wall-to-Lumen ratio of retinal arterioles as a tool to assess vascular changes. Hypertension 2009, 54, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Son, J.; Shin, J.Y.; Chun, E.J.; Jung, K.H.; Park, K.H.; Park, S.J. Predicting high coronary artery calcium score from retinal fundus images with deep learning algorithms. Transl. Vis. Sci. Technol. 2020, 9, 28. [Google Scholar] [CrossRef] [PubMed]
- Son, J.; Shin, J.Y.; Kim, H.D.; Jung, K.H.; Park, K.H.; Park, S.J. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images. Ophthalmology 2020, 127, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Wykoff, C.C.; Eichenbaum, D.A.; Roth, D.B.; Hill, L.; Fung, A.E.; Haskova, Z. Ranibizumab induces regression of diabetic retinopathy in most patients at high risk of progression to proliferative diabetic retinopathy. Ophthalmol. Retin. 2018, 2, 997–1009. [Google Scholar] [CrossRef]
- Mahurkar, A.A.; Vivino, M.A.; Trus, B.L.; Kuehl, E.M.; Datiles, M.B., 3rd; Kaiser-Kupfer, M.I. Constructing retinal fundus photomontages. A new computer-based method. Invest. Ophthalmol. Vis. Sci. 1996, 37, 1675–1683. [Google Scholar] [PubMed]
- Can, A.; Stewart, C.V.; Roysam, B. Robust hierarchical algorithm for constructing a mosaic from images of the curved human retina. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Fort Collins, CO, USA, 23–25 June 1999; Volume 2. [Google Scholar]
- Cattin, P.C.; Bay, H.; Van Gool, L.; Székely, G. Retina mosaicing using local features. In Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI); Springer: New York, NY, USA, 2006; pp. 185–192. [Google Scholar]
- Lee, S.; Reinhardt, J.M.; Cattin, P.C.; Abràmoff, M.D. Objective and expert-independent validation of retinal image registration algorithms by a projective imaging distortion model. Med. Image Anal. 2010, 14, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Cai, G.; Gou, X.; Yun, Z.; Wang, W.; Yang, W. Retinal Mosaicking with Vascular Bifurcations Detected on Vessel Mask by a Convolutional Network. J. Healthc. Eng. 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Bay, H.; Tuytelaars, T.; Van Gool, L. Surf: Speeded up robust features. In Proceedings of the European Conference on Computer Vision (ECCV); Springer: New York, NY, USA, 2006; pp. 404–417. [Google Scholar]
- Hernandez-Matas, C.; Zabulis, X.; Argyros, A.A. An experimental evaluation of the accuracy of keypoints-based retinal image registration. In Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea, 11–15 July 2017; pp. 377–381. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object eetection with region proposal networks. In Advances in Neural Information Processing Systems; Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R., Eds.; IEEE Computer Society: Washington, DC, USA, 2015; Volume 28, pp. 91–99. [Google Scholar]
- Noh, K.J.; Park, S.J.; Lee, S. Fine-Scale vessel extraction in fundus images by registration with fluorescein angiography. In Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI); Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.T., Khan, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 779–787. [Google Scholar]
- Noh, K.J.; Kim, J.; Park, S.J.; Lee, S. Multimodal registration of fundus images With fluorescein angiography for fine-scale vessel segmentation. IEEE Access 2020, 8, 63757–63769. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 June 2009. [Google Scholar]
- Noh, K.J.; Park, S.J.; Lee, S. Scale-space approximated convolutional neural networks for retinal vessel segmentation. Comput. Methods Programs Biomed. 2019, 178, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Byrd, R.H.; Lu, P.; Nocedal, J.; Zhu, C. A limited memory algorithm for bound constrained optimization. Siam J. Sci. Comput. 1995, 16, 1190–1208. [Google Scholar] [CrossRef]
- Burt, P.J.; Adelson, E.H. A multiresolution spline with application to image mosaics. Acm Trans. Graph. (TOG) 1983, 2, 217–236. [Google Scholar] [CrossRef]
- Park, S.J.; Shin, J.Y.; Kim, S.; Son, J.; Jung, K.H.; Park, K.H. A Novel Fundus Image Reading Tool for Efficient Generation of a Multi-dimensional Categorical Image Database for Machine Learning Algorithm Training. J. Korean Med. Sci. 2018, 33, e239. [Google Scholar] [CrossRef] [PubMed]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019; pp. 8024–8035. [Google Scholar]
- Bradski, G. The opencv library. Dr Dobb’s J. Softw. Tools 2000, 25, 120–125. [Google Scholar]
- Lowekamp, B.C.; Chen, D.T.; Ibáñez, L.; Blezek, D. The design of SimpleITK. Front. Neuroinform. 2013, 7, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gehan, M.A.; Fahlgren, N.; Abbasi, A.; Berry, J.C.; Callen, S.T.; Chavez, L.; Doust, A.N.; Feldman, M.J.; Gilbert, K.B.; Hodge, J.G.; et al. PlantCV v2: Image analysis software for high-throughput plant phenotyping. PeerJ 2017, 5, e4088. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhang, L.; Sun, C.; Yin, T.; Liu, C.; Yang, J. Robust Retinal Image Enhancement via Dual-Tree Complex Wavelet Transform and Morphology-Based Method. IEEE Access 2019, 7, 47303–47316. [Google Scholar] [CrossRef]
- Kowa American Corporation. KOWA VK-2 Image Filing System: Features; 2021. Available online: https://ophthalmic.kowa-usa.com/products/software/vk-2-image-filing-system-features (accessed on 12 January 2021).
- Brown, M.; Lowe, D.G. Automatic Panoramic Image Stitching using Invariant Features. Int. J. Comput. Vis. 2007, 74, 59–73. [Google Scholar] [CrossRef] [Green Version]
Preprocessing | Frame Sorting Criterion | Avg. Frames (std) | p-Value | % of Frames | Avg. TRE (std) |
---|---|---|---|---|---|
Min/max norm. | Number of keypoint matches | 3.83 (1.48) | 51.87% | 26.16 (30.93) | |
Min/max norm. | Optic disc/fovea detection | 3.62 (1.41) | 49.28% | 24.97 (33.23) | |
Modified top-hat [28] | Optic disc/fovea detection | 5.1 (1.98) | 69.33% | 24.22 (30.1) | |
Vessel contrast | Number of keypoint matches | 6.04 (1.31) | 0.24 | 82.82% | 23.98 (30.41) |
Vessel contrast | Optic disc/fovea detection | 6.34 (1.46) | – | 86.25% | 23.67 (31.1) |
† P-value: the p-value of the null hypothesis for the number of frames measured by the paired t-test of comparative methods and the proposed method in last row. ‡ This row refers to the proposed method. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Go, S.; Noh, K.J.; Park, S.J.; Lee, S. Fully Leveraging Deep Learning Methods for Constructing Retinal Fundus Photomontages. Appl. Sci. 2021, 11, 1754. https://doi.org/10.3390/app11041754
Kim J, Go S, Noh KJ, Park SJ, Lee S. Fully Leveraging Deep Learning Methods for Constructing Retinal Fundus Photomontages. Applied Sciences. 2021; 11(4):1754. https://doi.org/10.3390/app11041754
Chicago/Turabian StyleKim, Jooyoung, Sojung Go, Kyoung Jin Noh, Sang Jun Park, and Soochahn Lee. 2021. "Fully Leveraging Deep Learning Methods for Constructing Retinal Fundus Photomontages" Applied Sciences 11, no. 4: 1754. https://doi.org/10.3390/app11041754
APA StyleKim, J., Go, S., Noh, K. J., Park, S. J., & Lee, S. (2021). Fully Leveraging Deep Learning Methods for Constructing Retinal Fundus Photomontages. Applied Sciences, 11(4), 1754. https://doi.org/10.3390/app11041754