Design of a Wrist Rehabilitation System with a Novel Mixed Structural Optimization Applying Improved Harmony Search
Abstract
:1. Introduction
2. Problem Statement
Case Study
3. Optimization Problem
3.1. Objective Function
3.2. Limits and Constraints
3.3. Problem Complexity
4. Optimization Method
4.1. Improved Harmony Search
4.2. Computational Implementation
- Between two infeasible harmonies, pick the one with the lowest .
- Between a feasible and an infeasible harmonies, select the feasible one.
- Between two feasible harmonies, take the one with the best objective-function value.
Algorithm 1:Improved Harmony Search (ImHS) |
5. Results
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marini, F.; Hughes, C.M.L.; Squeri, V.; Doglio, L.; Moretti, P.; Morasso, P.; Masia, L. Robotic wrist training after stroke: Adaptive modulation of assistance in pediatric rehabilitation. J. Robot. Auton. Syst. 2017, 91, 169–178. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; De Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C.; et al. Heart disease and stroke statistics-2017 update: A report from the American Heart Association. J. Circ. 2017, 135, e146–e603. [Google Scholar] [CrossRef]
- Omarkulov, N.; Telegenov, K.; Zeinullin, M.; Tursynbek, I.; Shintemirov, A. Preliminary mechanical design of nu-wrist: A 3-DOF self-aligning wrist rehabilitation robot. In Proceedings of the 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 26–29 June 2016; pp. 962–967. [Google Scholar]
- Bütefisch, C.; Hummelsheim, H.; Denzler, P.; Mauritz, K. Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J. Neurol. Sci. 1995, 130, 59–68. [Google Scholar] [CrossRef]
- Sergi, F.; Lee, M.M.; Malley, K.O. Design of a series elastic actuator for a compliant parallel wrist rehabilitation robot. In Proceedings of the 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, WA, USA, 24–26 June 2013; pp. 1–6. [Google Scholar]
- Kim, H.M.; Hong, T.K.; Kim, G.S. Design of a wrist rotation rehabilitation robot. In Proceedings of the The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent, Hong Kong, China, 4–7 June 2014; pp. 240–245. [Google Scholar]
- Sajadi, M.R.; Nasr, A.; Moosavian, S.A.A.; Zohoor, H. Mechanical design, fabrication, kinematics and dynamics modeling, multiple impedance control of a wrist rehabilitation robot. In Proceedings of the 2015 3rd RSI International Conference on Robotics and Mechatronics (ICRoM), Tehran, Iran, 7–9 October 2015; pp. 290–295. [Google Scholar]
- Al-Fahaam, H.; Davis, S.; Nefti-Mezian, S. Wrist rehabilitation exoskeleton robot based on pneumatic soft actuators. In Proceedings of the 2016 International Conference for Students on Applied Engineering (ICSAE), Newcastle upon Tyne, UK, 20–21 October 2016; pp. 491–496. [Google Scholar]
- Pezent, E.; Rose, C.G.; Deshpande, A.D.; O’Malley, M.K. Design and characterization of the OpenWrist: A robotic wrist exoskeleton for coordinated hand-wrist rehabilitation. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 720–725. [Google Scholar]
- Gandomi, A.H.; Yang, X.-S.; Alavi, A.H. Mixed variable structural optimization using firefly algorithm. Comput. Struct. 2011, 6, 2325–2336. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, W.J.; Chen, L. Design for control—A concurrent engineering approach for mechatronic systems design. IEEE/ASME Trans. Mechatronics 2001, 6, 161–169. [Google Scholar] [CrossRef]
- Bordoloi, S.; Guerrero, H.H. Design for control—A new perspective on process and product innovation. Int. J. Prod. Econ. 2008, 113, 346–358. [Google Scholar] [CrossRef]
- Kuo, T.C.; Huang, S.H.; Zhang, H.C. Design for manufacture and design for x: Concepts, applications, and perspectives. Comput. Ind. Eng. 2001, 41, 241–260. [Google Scholar] [CrossRef]
- Yao, X.; Moon, S.K.; Bi, G. Multidisciplinary design optimization to identify additive manufacturing resources in customized product development. J. Comput. Des. Eng. 2017, 4, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Sharafi, P.; Teh, L.H.; Hadi, M.N. Shape optimization of thin-walled steel sections using graph theory and ACO algorithm. J. Constr. Steel Res. 2014, 101, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Shimoda, M.; Liu, Y.; Ishikawa, K. Optimum shape design of thin-walled cross sections using a parameter-free optimization method. Thin-Walled Struct. 2020, 148. [Google Scholar] [CrossRef]
- Manevich, A.I.; Raksha, S.V. Two-criteria optimization of h-section bars-beams under bending and compression. Thin-Walled Struct. 2007, 45, 898–901. [Google Scholar] [CrossRef] [Green Version]
- Ozbasaran, H.; Yilmaz, T. Shape optimization of tapered i-beams with lateral-torsional buckling, defletion and stress constraints. J. Constr. Steel Res. 2018, 143, 119–130. [Google Scholar] [CrossRef]
- Geem, Z.; Kim, J.; Loganathan, G. A New Heuristic Optimization Algorithm: Harmony Search. Simulation: Trans. Soc. Model. Simul. Int. 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Yang, X. Harmony Search as a Metaheuristic Algorithm. In Music-Inspired Harmony Search Algorithm: Theory and Applications; Geem, Z.W., Ed.; Springer: Berlin, Germany, 2009; Volume 191, pp. 1–14. ISBN 978-3-642-00185-7. [Google Scholar]
- Mahdavi, M.; Fesanghary, M.; Damangir, E. An Improved Harmony Search Algorithm for Solving Optimization Problems. Appl. Math. Comput. 2007, 188, 1567–1579. [Google Scholar] [CrossRef]
- Degertekin, S.O. Improved Harmony Search Algorithms for Sizing Optimization of Truss Structures. Comput. Struct. 2012, 92–93, 229–241. [Google Scholar] [CrossRef]
- Maheri, M.R.; Narimani, M.M. An Enhanced Harmony Search Algorithm for Optimum Design of Side Sway Steel Frames. Comput. Struct. 2014, 136, 78–89. [Google Scholar] [CrossRef]
- Geem, Z.W.; Cho, Y. Optimal Design of Water Distribution Networks Using Parameter-Setting-Free Harmony Search for Two Major Parameters. J. Water Resour. Plan. Manag. 2010, 137. [Google Scholar] [CrossRef]
- Yousefi, M.; Enayatifar, R.; Darus, A.N.; Abdullah, A.H. Optimization of Plate-fin Heat Exchangers by an Improved Harmony Search Algorithm. Appl. Therm. Eng. 2013, 50, 877–885. [Google Scholar] [CrossRef]
- Manjarres, D.; Landa-Torres, I.; Gil-Lopez, S.; Ser, J.D.; Bilbao, M.N.; Salcedo-Sanz, S.; Geem, Z.W. A survey on applications of the harmony search algorithm. Eng. Appl. Artif. Intell. 2013, 26, 1818–1831. [Google Scholar] [CrossRef]
- Assad, A.; Deep, K. Applications of Harmony Search Algorithm in Data Mining: A Survey. Proceedings of Fifth International Conference on Soft Computing for Problem Solving, Saharanpur, India, 18–20 December 2015; pp. 863–874. [Google Scholar]
- Tseng, S. An improved harmony search for traveling salesman problem. In Proceedings of the 2016 2nd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 14–17 October 2016; pp. 299–302. [Google Scholar]
- Cuevas, E. Block-matching algorithm based on harmony search optimization for motion estimation. Appl. Intell. 2013, 39, 165–183. [Google Scholar] [CrossRef] [Green Version]
- Saparudin, F.A.; Kurniawan, A. Harmony Search Algorithm with Dynamic Pitch Adjustment Rate and Fret Width for Image Compression. In Proceedings of the Asia Pacific Conference on Multimedia and Broadcasting (APMediaCast), Bali, Indonesia, 17–19 November 2016. [Google Scholar]
- Mallick, S.; Sudhakar, K.; Kar, R.; Mandal, D.; Ghoshal, S.P. CMOS Analog Amplifier Circuit sizing using Opposition based Harmony Search Algorithm. In Proceedings of the 2016 International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, Tamilnadu, India, 6–8 April 2016. [Google Scholar]
- Alexandre, E.; Alvarez, L.; Amor, J.; Gil-Pita, R.; Huerta, E. Music-Inspired Harmony Search Algorithm Applied to Feature Selection for Sound Classification in Hearing Aids. In Proceedings of the AES 124th Convention Proceedings, Amsterdam, The Netherlands, 17–20 May 2008; Volume 2. [Google Scholar]
- Elyasigomari, V.; Lee, D.A.; Screen, H.R.; Shaheed, M.H. Development of a two-stage gene selection method that incorporates a novel hybrid approach using the cuckoo optimization algorithm and harmony search for cancer classification. J. Biomed. Inform. 2017, 67, 11–20. [Google Scholar] [CrossRef]
- Vinoth, N.; Vijayakarthick, M.; Ram, A.G.; Meyyappan, S.; Sathishbabu, S. Thresholding of Skin Melanoma Images based on Kapur’s Entropy with Harmony Search Algorithm. Eur. J. Mol. Clin. Med. 2020, 7, 716–726. [Google Scholar]
- Alia, O.M.; Mandava, R.; Ramachandram, D.; Aziz, M.E. Harmony search-based cluster initialization for fuzzy c-means segmentation of MR images. In Proceedings of the TENCON 2009—2009 IEEE Region 10 Conference, Singapore, 23–26 January 2009; pp. 1–6. [Google Scholar]
- Panchal, A. Harmony Search in Therapeutic Medical Physics. In Music-Inspired Harmony Search Algorithm: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2009; pp. 189–203. ISBN 978-3-642-00185-7. [Google Scholar]
- Saka, M.; Hasançebi, O.; Geem, Z.W. Metaheuristics in Structural Optimization and Discussions on Harmony Search Algorithm. Swarm Evol. Comput. 2016, 28. [Google Scholar] [CrossRef]
- Srikanth, D.; Barai, S.V. Structural Optimization Using Harmony Search Algorithm. In Soft Computing in Industrial Applications. Advances in Intelligent and Soft Computing; Gao, X.Z., Gaspar-Cunha, A., Köppen, M., Schaefer, G., Wang, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 75. [Google Scholar]
- García-Segura, T.; Yepes, V.; Alcalá, J. Computer-support tool to optimize bridges automatically. Int. J. Comput. Methods Exp. Meas. 2017, 5, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Aponte-Rodríguez, J.A.; Portilla-Flores, E.A.; Avilés-Sánchez, O.F.; Prada-Jiménez, V.; Vega-Alvarado, E. Concurrent design applied to the structural optimization of a wrist rehabilitation system. In Proceedings of the 14th International Conference on Electrical Engineering, Mexico City, Mexico, 20–22 September 2017; pp. 1–6. [Google Scholar]
- Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Budynas, R.G.; Nisbett, K. Shigley’s Mechanical Engineering Design, 10th ed.; McGraw Hill Education: New York, NY, USA, 2015. [Google Scholar]
- Mott, R.; Vavrek, E.; Wang, J. Machine Elements in Mechanical Design, 6th ed.; Pearson Education: New York, NY, USA, 2017. [Google Scholar]
- Kapandji, A.; Lacomba, M. Fisiología articular: Esquemas comentados de mecánica humana; Editorial Médica Panamericana: Ciudad de México, Mexico, 2006; Volume 1, ISBN 9788498354584. [Google Scholar]
- Avila, R.; Prado, L.; González, E. Dimensiones antropométricas de la población latinoamericana: México, Cuba, Colombia, Chile; Universidad de Guadalajara: Guadalajara, Mexico, 2007. [Google Scholar]
- French, J.A.; Rose, C.G.; Malley, M.K.O. System characterization of mahi exo-ii: A robotic exosqueleton for upper extremity rehabilitation. In Proceedings of the ASME 2014 Dynamic Systems and Control Conference, San Antonio, TX, USA, 22–24 October 2014. [Google Scholar]
- Lampman, S.; Boring, R.; Committee, A.I.H.; Davidson, G.; Hammel, A.; Henry, S.; Reidenbach, F.; Scott, W. ASM Handbook: Fatigue and Fracture; ASM International: Novelty, OH, USA, 1996. [Google Scholar]
- Liang, J.; Runarsson, T.; Mezura-Montes, E.; Suganthan, P.; Clerc, M.; Coello, C.; Deb, K. Problem Definitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-Parameter Optimization; Technical Report; Nanyang Technological University: Singapore, 2006. [Google Scholar]
- Michalewicz, Z.; Schoenauer, M. Evolutionary algorithms for constrained parameter optimization problems. Evol. Comput. 1996, 4, 1–32. [Google Scholar] [CrossRef]
- Portilla-Flores, E.A.; Sánchez-Márquez, A.; Flores-Pulido, L.; Vega-Alvarado, E.; Yañez, M.B.C.; Aponte-Rodríguez, J.A.; Niño-Suarez, P.A. Enhancing the Harmony Search Algorithm Performance on Constrained Numerical Optimization. IEEE Access 2017, 5. [Google Scholar] [CrossRef]
- He, X.S.; Fan, Q.W.; Karamanoglu, M.; Yang, X.S. Comparison of Constraint-Handling Techniques for Metaheuristic Optimization. In Computational Science— ICCS 2019, Lecture Notes in Computer Science; Rodrigues, J.M.F., Cardoso, P.J.S., Monteiro, J., Lam, R., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J.J., Sloot, P.M.A., Eds.; Springer: Cham, Switzerland, 2019; Volume 11538. [Google Scholar]
- Deb, K. An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 2000, 186, 311–338. [Google Scholar] [CrossRef]
- AHammoudi; Djeddou, F. Composite differential evolution algorithm: Mixed variable structural optimization problem. J. Chem. 2015, 3, 3–8. [Google Scholar]
- Gao, S.; Zhou, M.; Wang, Y.; Cheng, J.; Yachi, H.; Wang, J. Dendritic Neuron Model With Effective Learning Algorithms for Classification, Approximation, and Prediction. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 601–614. [Google Scholar] [CrossRef]
- Wang, J.; Kumbasar, T. Parameter optimization of interval Type-2 fuzzy neural networks based on PSO and BBBC methods. IEEE/CAA J. Autom. Sin. 2019, 6, 247–257. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution, a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
Density | Elastic Modulus E | Endurance Limit | ||
---|---|---|---|---|
Type | Material | [kg/m] | [Pa] | [Pa] |
1 | Aluminum 7075 T6 | 2810 | ||
2 | Steel AISI 1045 CD | 7870 | ||
3 | Steel AISI 304L | 8000 |
Design Variables | Equality Constraints | Inequality Constraints | Complexity |
---|---|---|---|
6 | 2 | 4 | 0 |
Link 1 | Link 2 | |||||||
---|---|---|---|---|---|---|---|---|
Rank | Type | Thickness (m) | Width (m) | Type | Thickness (m) | Width (m) | Total Weight (N) | |
1 | 1 | 0.00725 | 0.02409 | 1 | 0.00672 | 0.01772 | 0.77042 | |
2 | 1 | 0.00720 | 0.02444 | 1 | 0.00780 | 0.01585 | 0.77990 | |
3 | 1 | 0.00615 | 0.02382 | 1 | 0.00686 | 0.02149 | 0.78011 | |
4 | 1 | 0.00866 | 0.01990 | 1 | 0.01021 | 0.01383 | 0.78143 | |
5 | 1 | 0.00951 | 0.01806 | 1 | 0.00563 | 0.02514 | 0.81949 |
Best | Worst | Average | Median | Variance | Std Dev |
---|---|---|---|---|---|
0.77042 | 1.07628 | 0.86923 | 0.87400 | 0.00745 | 0.08631 |
Link 1 | Link 2 | |||||||
---|---|---|---|---|---|---|---|---|
Algorithm | Type | Thickness (m) | Width (m) | Type | Thickness (m) | Width (m) | Total Weight (N) | |
ImHS | 1 | 0.00725 | 0.02409 | 1 | 0.00672 | 0.01772 | 0.77042 | |
DE | 1 | 0.01097 | 0.01593 | 1 | 0.01099 | 0.01590 | 0.86021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vega-Alvarado, E.; Vázquez-Castillo, V.; Portilla-Flores, E.A.; Calva-Yañez, M.B.; Sepúlveda-Cervantes, G. Design of a Wrist Rehabilitation System with a Novel Mixed Structural Optimization Applying Improved Harmony Search. Appl. Sci. 2021, 11, 1766. https://doi.org/10.3390/app11041766
Vega-Alvarado E, Vázquez-Castillo V, Portilla-Flores EA, Calva-Yañez MB, Sepúlveda-Cervantes G. Design of a Wrist Rehabilitation System with a Novel Mixed Structural Optimization Applying Improved Harmony Search. Applied Sciences. 2021; 11(4):1766. https://doi.org/10.3390/app11041766
Chicago/Turabian StyleVega-Alvarado, Eduardo, Valentín Vázquez-Castillo, Edgar Alfredo Portilla-Flores, Maria Bárbara Calva-Yañez, and Gabriel Sepúlveda-Cervantes. 2021. "Design of a Wrist Rehabilitation System with a Novel Mixed Structural Optimization Applying Improved Harmony Search" Applied Sciences 11, no. 4: 1766. https://doi.org/10.3390/app11041766
APA StyleVega-Alvarado, E., Vázquez-Castillo, V., Portilla-Flores, E. A., Calva-Yañez, M. B., & Sepúlveda-Cervantes, G. (2021). Design of a Wrist Rehabilitation System with a Novel Mixed Structural Optimization Applying Improved Harmony Search. Applied Sciences, 11(4), 1766. https://doi.org/10.3390/app11041766