Refrigerant Charge Prediction of Vapor Compression Air Conditioner Based on Start-Up Characteristics
Abstract
:1. Introduction
2. Experiment
2.1. Experimental Setup
2.2. Experimental Method and Condition
3. Start-Up Characteristics
3.1. Start-Up Characteristics with Rated Refrigerant Charge
3.2. Start-Up Characteristics with Refrigerant Charge
4. Model for Prediction of Dynamic Characteristics
5. Detection of Refrigerant Charge Amount
Detection Results of Refrigerant Charge Amount
6. Conclusions
- The changes in the dynamic characteristics according to the refrigerant charge amount during the start-up of an air conditioner can be monitored.
- The dynamic models for the condensation temperature and degree of subcooling can predict the distinct start-up characteristics that depend on the refrigerant charge amount. The estimated RMSEs of the condensation temperature and degree of subcooling of the test data are 0.53 and 0.84 °C, respectively.
- The refrigerant charge is one of predictors that define the dynamic characteristics of response variables. The refrigerant charge can be estimated by minimizing the RMSEs of the predicted values of the dynamic model and experimental data.
- The proposed method, which uses the dynamic model during start-up operation, is an effective technique for predicting the refrigerant charge amount. The average prediction error for the test data is 2.54%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbols | |
b | bias (scalar parameter defining decision boundary position) |
Fcomp | frequency of compressor input power (Hz) |
P | pressure (kPa) |
Ref | refrigerant charge amount (g) |
T | temperature (°C) |
w | flatness (vector parameter defining decision boundary position) |
W | power consumption (kW) |
x | multivariate set of predictor |
y | response variable |
ϵ | maximal width of x and the decision boundary (hyper-parameter of model) |
ξ, ξ* | slack variables (distance of the decision boundary and error data) |
Abbreviations | |
C | penalty constant (hyper-parameter of model) |
COP | coefficient of performance |
c | condenser |
dis | discharge |
e | evaporator |
ex | electric expansion valve (EEV) |
HX | heat exchanger |
ID | indoor unit |
in | inlet |
iqr | interquartile |
m | number of response variables |
meas | measured |
n | number of data sample |
OD | outdoor unit |
pred | prediction |
RMSE | root mean square error |
r-SVM | regression support vector machine |
s | saturation temperature |
sat | saturation |
sc | subcooling |
suc | suction |
References
- US Energy Information Administration. Annual Energy Outlook 2017; US Energy Information Administration: Washington, DC, USA, 2017.
- Srinivas, K.; Michael, R.B. Review Article: Methods for fault detection, diagnostics, and prognostics for building systems―A review, part I. HVAC&R Res. 2005, 11, 3–25. [Google Scholar]
- Madani, H.; Roccatello, E. A comprehensive study on the important faults in heat pump system during the warranty period. Int. J. Refrig. 2014, 48, 19–25. [Google Scholar] [CrossRef]
- Choi, J.M.; Kim, Y.C. The effects of improper refrigerant charge on the performance of a heat pump with an electronic expansion valve and capillary tube. Energy 2002, 27, 391–404. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, H.S.; Kim, M.S. The effect of the refrigerant charge amount on single and cascade cycle heat pump systems. Int. J. Refrig. 2014, 40, 254–268. [Google Scholar] [CrossRef]
- Kim, N.H. Optimization of the water spray nozzle, refrigerant charge amount and expansion valve opening for a unitary ice maker using R-404A. Int. J. Air Cond. Refrig. 2017, 25, 1750025. [Google Scholar] [CrossRef]
- Goswami, D.Y.; Ek, G.; Leung, M.; Jotshi, C.K.; Sherif, S.A.; Colacino, F. Effect of refrigerant charge on the performance of air conditioning systems. Int. J. Refrig. 2001, 25, 741–750. [Google Scholar] [CrossRef]
- Farzad, M.; O’Neal, D.L. System performance characteristics of an air conditioner over a range of charging conditions. Int. J. Refrig. 1991, 14, 321–328. [Google Scholar] [CrossRef]
- Rodrigo, L.; Daniel, C.A.; Angelo, M.; Laura, N.A.; Ramon, C. TEWI analysis of a stand-alone refrigeration system using low-GWP fluids with leakage ratio consideration. Int. J. Refrig. 2020, 118, 279–289. [Google Scholar]
- Tassou, S.A.; Grace, I.N. Fault diagnosis and refrigerant leak detection in vapour compression refrigeration systems. Int. J. Refrig. 2005, 28, 680–688. [Google Scholar] [CrossRef]
- Rossi, T.M.; Braun, J.E. A statistical, rule-based fault detection and diagnostic method for vapor compression air conditioners. HVAC&R Res. 1997, 3, 19–37. [Google Scholar]
- Kocyigit, N.; Bulgurcu, H.; Lin, C.X. Fault diagnosis of a vapor compression refrigeration system with hermetic reciprocating compressor based on p-h diagram. Int. J. Refrig. 2014, 45, 44–54. [Google Scholar] [CrossRef]
- Grace, I.N.; Datta, D.; Tassou, S.A. Sensitivity of refrigeration system performance to charge levels and parameters for on-line leak detection. Appl. Therm. Eng. 2005, 25, 557–566. [Google Scholar] [CrossRef]
- Li, G.; Hu, Y.; Chen, H.; Shen, L.; Li, H.; Li, J.; Hu, W. Extending the virtual refrigerant charge sensor(VRC) for variable refrigerant flow (VRF) air conditioning system using data-based analysis methods. Appl. Therm. Eng. 2016, 93, 908–919. [Google Scholar] [CrossRef]
- Li, H.; Braun, J.E. Development, evaluation, and demonstration of a virtual refrigerant charge sensor. HVAC&R Res. 2009, 15, 117–136. [Google Scholar] [CrossRef]
- Li, H.; Braun, J.E. Virtual refrigerant pressure sensors for use in monitoring and fault diagnosis of vapor compression equipment. HVAC&R Res. 2009, 15, 597–616. [Google Scholar] [CrossRef]
- Li, B.; Alleyne, A.G. A dynamic model of a vapor compression cycle with shut-down and start-up operations. Int. J. Refrig. 2010, 33, 538–552. [Google Scholar] [CrossRef]
- Li, J.; Deng, W.; Yan, G. Improving quick cooling performance of a R410A split air conditioner during startup by actively controlling refrigerant mass migration. Appl. Therm. Eng. 2018, 128, 141–150. [Google Scholar] [CrossRef]
- Kim, M.; Kim, M.S. Performance investigation of a variable a vapor compression system for fault detection and diagnosis. Int. J. Refrig. 2005, 28, 481–488. [Google Scholar] [CrossRef]
- Elsayed, A.O.; Kayed, T.S. Dynamic performance analysis of inverter-driven split air conditioner. Int. J. Refrig. 2020, 118, 443–452. [Google Scholar] [CrossRef]
- Yoo, J.W.; Hong, S.B.; Kim, M.S. Refrigerant leakage detection in an EEV installed residential air conditioner with limited sensor installations. Int. J. Refrig. 2017, 78, 157–165. [Google Scholar] [CrossRef]
- Liu, J.; Hu, Y.; Chen, H.; Wang, J.; Li, G.; Hu, W. A refrigerant charge fault detection method for variable refrigerant flow (VRF) air-conditioning systems. Appl. Therm. Eng. 2016, 107, 284–293. [Google Scholar] [CrossRef]
- Kocyigit, N. Fault and sensor error diagnostic strategies for a vapor compression refrigeration system by using fuzzy inference systems and artificial neural network. Int. J. Refrig. 2015, 50, 69–79. [Google Scholar] [CrossRef]
- Shi, S.; Li, G.; Chen, H.; Liu, J.; Hu, Y.; Xing, L. Refrigerant charge fault diagnosis in the VRF system using bayesian artificial neural network combined with Relief filter. Appl. Therm. Eng. 2017, 112, 698–706. [Google Scholar] [CrossRef]
- Guo, Y.; Li, G.; Chen, H.; Wang, J.; Guo, M.; Sun, S. Optimized neural network-based fault diagnosis strategy for VRF system in heating mode using data mining. Appl. Therm. Eng. 2017, 125, 1402–1413. [Google Scholar] [CrossRef]
- Guo, Y.; Tan, Z.; Chen, H.; Li, G.; Wang, J.; Huang, R. Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving. Appl. Energy 2018, 225, 732–745. [Google Scholar] [CrossRef]
- Eom, Y.H.; Yoo, J.W.; Hong, S.B.; Kim, M.S. Refrigerant charge fault detection method of air source heat pump system using convolutional neural network for energy saving. Energy 2019, 187, 115877. [Google Scholar] [CrossRef]
- Xi, X.C.; Poo, A.N.; Chou, S.K. Support vector regression model predictive control on a HVAC plant. Control. Eng. Pract. 2007, 15, 897–908. [Google Scholar] [CrossRef]
- Allison, S.; Bai, H.; Jayaraman, B. Wind estimation using quadcopter motion: A machine learning approach. Aerosp. Sci. Techmol. 2020, 98, 105699. [Google Scholar] [CrossRef] [Green Version]
- Mahdevari, S.; Torabi, S.R. Prediction of tunnel convergence using artificial neural networks. Tunn. Undergr. Space Technol. 2012, 28, 218–228. [Google Scholar] [CrossRef]
- Burges, C.J. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Smola, A.J.; Schlökopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Pai, P.F. System reliability forecasting by support vector machines with genetic algorithms. Math. Comput. Model. 2005, 43, 262–274. [Google Scholar] [CrossRef]
- Gunn, S.R. Support Vector Machines for Classification and Regression; Technical Report; University of Southampton: Southampton, UK, 1998. [Google Scholar]
- Hsu, C.W.; Chang, C.C.; Lin, C.J. A Practical Guide to Support Vector Classification; Technical Report; Department of Computer Science and Information Engineering, National Taiwan University: Taipei City, Taiwan, 2010. [Google Scholar]
- Bengio, Y.; Grandvalet, Y. No unbiased estimator of the variance of K-Fold Cross Validation. J. Mach. Learn. Res. 2004, 5, 1089–1105. [Google Scholar]
- Mathworks Help Center Support Vector Machine Regression. Available online: https://kr.mathworks.com/help/stats/support-vector-machine-regression.html?lang=en (accessed on 4 January 2021).
Variable | Description | Unit |
---|---|---|
Ref | Refrigerant charge amount | g |
Fcomp | Frequency of compressor input power | Hz |
TID,in | Indoor unit—inlet air temperature | °C |
TOD,in | Outdoor unit—inlet air temperature | °C |
W | Power consumption | kW |
Psuc | Compressor suction pressure | kPa |
Pdis | Compressor discharge pressure | kPa |
TID,out | Indoor unit—outlet air temperature | °C |
TOD,out | Outdoor unit—outlet air temperature | °C |
Tsuc | Compressor suction refrigerant temperature | °C |
Tdis | Compressor discharge refrigerant temperature | °C |
Tex,in | EEV refrigerant inlet temperature | °C |
Tex,out | EEV refrigerant outlet temperature | °C |
Tc,in | Condenser refrigerant inlet temperature | °C |
Tc,sat | Condensation temperature | °C |
Tc,out | Condenser refrigerant outlet temperature | °C |
Tsc | Degree of subcooling (Tc,sat − Tc,out) | °C |
Te,in | Evaporator refrigerant inlet temperature | °C |
Te,sat | Evaporation temperature | °C |
Te,out | Evaporator refrigerant outlet temperature | °C |
No. | Outdoor Temperature | Initial Indoor Temperature | Refrigerant Charge Amount (g) | Charge Uncertainty (%) | Type |
---|---|---|---|---|---|
1 | 30 | 28 | 550 | 0.91 | Training |
2 | 35 | 28 | 550 | 0.91 | Training |
3 | 40 | 28 | 550 | 0.91 | Training |
4 | 45 | 28 | 550 | 0.91 | Training |
5 | 35 | 35 | 550 | 0.91 | Training |
6 | 40 | 35 | 550 | 0.91 | Training |
7 | 45 | 35 | 550 | 0.91 | Training |
8 | 35 | 35 | 600 | 0.83 | Test |
9 | 40 | 35 | 600 | 0.83 | Test |
10 | 45 | 35 | 600 | 0.83 | Test |
11 | 30 | 28 | 650 | 1.09 | Training |
12 | 35 | 28 | 650 | 1.09 | Training |
13 | 40 | 28 | 650 | 1.09 | Training |
14 | 45 | 28 | 650 | 1.09 | Training |
15 | 35 | 35 | 650 | 1.09 | Training |
16 | 40 | 35 | 650 | 1.09 | Training |
17 | 45 | 35 | 650 | 1.09 | Training |
18 | 35 | 35 | 700 | 1.01 | Test |
19 | 40 | 35 | 700 | 1.01 | Test |
20 | 45 | 35 | 700 | 1.01 | Test |
21 | 30 | 28 | 750 | 1.33 | Training |
22 | 35 | 28 | 750 | 1.33 | Training |
23 | 40 | 28 | 750 | 1.33 | Training |
24 | 45 | 28 | 750 | 1.33 | Training |
25 | 35 | 35 | 750 | 1.33 | Training |
26 | 40 | 35 | 750 | 1.33 | Training |
27 | 45 | 35 | 750 | 1.33 | Training |
28 | 35 | 35 | 800 | 1.25 | Test |
29 | 40 | 35 | 800 | 1.25 | Test |
30 | 45 | 35 | 800 | 1.25 | Test |
31 | 30 | 28 | 850 | 1.44 | Training |
32 | 35 | 28 | 850 | 1.44 | Training |
33 | 40 | 28 | 850 | 1.44 | Training |
34 | 45 | 28 | 850 | 1.44 | Training |
35 | 35 | 35 | 850 | 1.44 | Training |
36 | 40 | 35 | 850 | 1.44 | Training |
37 | 45 | 35 | 850 | 1.44 | Training |
38 | 35 | 35 | 900 | 1.36 | Test |
39 | 40 | 35 | 900 | 1.36 | Test |
40 | 45 | 35 | 900 | 1.36 | Test |
41 | 30 | 28 | 950 | 1.49 | Training |
42 | 35 | 28 | 950 | 1.49 | Training |
43 | 40 | 28 | 950 | 1.49 | Training |
44 | 45 | 28 | 950 | 1.49 | Training |
45 | 35 | 35 | 950 | 1.49 | Training |
46 | 40 | 35 | 950 | 1.49 | Training |
47 | 45 | 35 | 950 | 1.49 | Training |
Response Variable | Predictors |
---|---|
Tc,sat | Ref, , TOD,in, TID,in, , |
Tsc (Tc,sat − Tc,out) | Ref, , TOD,in, TID,in, , |
Tdis | Ref, , TOD,in, TID,in, , |
W | Ref, , TOD,in, TID,in, , |
Kernel | K-Fold | Response Variable | C | RMSE | ||
---|---|---|---|---|---|---|
Training Data | Test Data | |||||
Linear | 5 | Tc,sat | 0.509 | 0.101 | 0.51 °C | 0.53 °C |
Tsc | 0.414 | 0.076 | 0.83 °C | 0.84 °C | ||
Tdis | 0.461 | 0.301 | 3.76 °C | 5.12 °C | ||
W | 20.3 | 29.8 | 5.54% | 5.6% |
Response Variable | Refrigerant Charge Amount (g) | Error (%) | Average Error (%) | |
---|---|---|---|---|
Actual | Detected | |||
Tc,sat | 600 | 625/632/645 | 5.7 | 3.32 |
700 | 703/724/726 | 2.5 | ||
800 | 794/827/831 | 2.7 | ||
900 | 875/881/935 | 2.9 | ||
Tsc | 600 | 569/622/638 | 4.9 | 2.79 |
700 | 702/706/707 | 0.7 | ||
800 | 824/833/837 | 3.9 | ||
900 | 894/920/921 | 1.8 | ||
W | 600 | 662/669/696 | 13.3 | 7.3 |
700 | 717/719/756 | 4.4 | ||
800 | 781/882/950 | 10.2 | ||
900 | 850/924/950 | 4.6 | ||
Tc,sat and Tsc | 600 | 586/629/635 | 3.9 | 2.54 |
700 | 701/711/712 | 1.1 | ||
800 | 815/832/834 | 3.5 | ||
900 | 889/909/924 | 1.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, Y.; Chang, Y.S. Refrigerant Charge Prediction of Vapor Compression Air Conditioner Based on Start-Up Characteristics. Appl. Sci. 2021, 11, 1780. https://doi.org/10.3390/app11041780
Yun Y, Chang YS. Refrigerant Charge Prediction of Vapor Compression Air Conditioner Based on Start-Up Characteristics. Applied Sciences. 2021; 11(4):1780. https://doi.org/10.3390/app11041780
Chicago/Turabian StyleYun, Yechan, and Young Soo Chang. 2021. "Refrigerant Charge Prediction of Vapor Compression Air Conditioner Based on Start-Up Characteristics" Applied Sciences 11, no. 4: 1780. https://doi.org/10.3390/app11041780
APA StyleYun, Y., & Chang, Y. S. (2021). Refrigerant Charge Prediction of Vapor Compression Air Conditioner Based on Start-Up Characteristics. Applied Sciences, 11(4), 1780. https://doi.org/10.3390/app11041780