Assessment of a Spalart–Allmaras Model Coupled with Local Correlation Based Transition Approaches for Wind Turbine Airfoils
Abstract
:1. Introduction
2. Governing Equations
2.1. ––SA Transition Model
2.1.1. Empirical Correlations in the Model
2.1.2. Equation Coupling with the – Model
2.2. ––SA20 Transition Model
2.3. log –SA Transition Model
2.4. Boundary Conditions
3. Numerical Solution
4. Results
4.1. The ––SA and ––SA20 Models’ Results
4.1.1. SD7003 Airfoil
4.1.2. S809 Airfoil
4.2. log –SA Model Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CIRA | Centro Italiano Ricerche Aerospaziali |
CFD | Computational Fluid– Dynamics |
LCTM | Local Correlation based Transition Model |
RANS | Reynolds-Averaged Navier–Stokes equations |
SA | Spalart–Allmaras |
FVM | Finite Volume Method |
SIMPLE | Semi–Implicit Method for Pressure Linked Equations |
SST | Shear–Stresses Transport |
PCG | Preconditioned Conjugate Gradient |
PBiCG | Preconditioned Bi–Conjugate Gradient |
DILU | Diagonal Incomplete–Lower Upper |
SD | Selig–Donovan |
References
- Windte, J.; Scholz, U.; Radespiel, R. Validation of the RANS-simulation of laminar separation bubbles on airfoils. Aerosp. Sci. Technol. 2006, 10, 484–494. [Google Scholar] [CrossRef]
- Menter, F.; Langtry, R.; Likki, S.; Suzen, Y.; Huang, P.; Volker, S. A correlation-based transition model using local variables—Part 1: Model formulation. J. Turbomach. 2006, 128, 413–422. [Google Scholar] [CrossRef]
- Menter, F.; Langtry, R.; Volker, S. Transition modeling for general purpose CFD codes. Flow Turbul. Combust. 2006, 77, 277–303. [Google Scholar] [CrossRef]
- Walters, D.; Cokljat, D. A three-equation eddy-viscosity model Reynolds—Averaged Navier—Stokes simulations of transitional flows. J. Fluid Eng. ASME 2008, 130, 1214011–1214014. [Google Scholar] [CrossRef]
- Rezaei, A.S.; Taha, H. Circulation dynamics of small-amplitude pitching airfoil undergoing laminar-to-turbulent transition. J. Fluids Struct. 2021, 100, 103177. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, Z.; Fu, S. Unsteady Transition Studies over a Pitching Airfoil Using a k–ω–γ Transition Model. AIAA J. 2018, 56, 3776–3781. [Google Scholar] [CrossRef]
- Menter, F.R.; Smirnov, P.E.; Liu, T.; Avancha, R. A One-Equation Local Correlation-Based Transition Model. Flow Turbul. Combust. 2015, 95, 583–619. [Google Scholar] [CrossRef]
- Medida, S.; Baeder, J.D. Application of the Correlation–based γ– transition model to the Spalart–Allmaras turbulence model. In Proceedings of the 20th AIAA Computational Fluid Dynamics Conference, Honolulu, HI, USA, 27–30 June 2011. [Google Scholar]
- Aranake, A.C.; Lakshminarayan, V.K.; Duraisamy, K. Assessment of Transition Model and CFD Methodology for Wind Turbine Flows. In Proceedings of the 42nd AIAA Fluid Dynamics Conference and Exhibit, New Orleans, LA, USA, 25–28 June 2012. [Google Scholar]
- Wang, J.; Sheng, C. A comparison of a local correlation-based transition model coupled with SA and SST turbulence models. In Proceedings of the 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 5–9 January 2015. [Google Scholar]
- D’Alessandro, V.; Montelpare, S.; Ricci, R.; Zoppi, A. Numerical modeling of the flow over wind turbine airfoils by means of Spalart–Allmaras local correlation based transition model. Energy 2017, 130, 402–419. [Google Scholar] [CrossRef]
- D’Alessandro, V.; Garbuglia, F.; Montelpare, S.; Zoppi, A. A Spalart–Allmaras local correlation-based transition model for Thermo–fluid dynamics. J. Phys. Conf. Ser. 2017, 923, 012029. [Google Scholar] [CrossRef]
- Liu, K.; Wang, Y.; Song, W.P.; Han, Z.H. A two-equation local-correlation-based laminar-turbulent transition modeling scheme for external aerodynamics. Aerosp. Sci. Technol. 2020, 106, 106128. [Google Scholar] [CrossRef]
- Piotrowski, M.G.H.; Zingg, D.W. Smooth Local Correlation-Based Transition Model for the Spalart–Allmaras Turbulence Model. AIAA J. 2020, 1–19. [Google Scholar] [CrossRef]
- Rizzo, F.; D’Alessandro, V.; Montelpare, S.; Giammichele, L. Computational study of a bluff body aerodynamics: Impact of the laminar-to-turbulent transition modeling. Int. J. Mech. Sci. 2020, 178, 105620. [Google Scholar] [CrossRef]
- Lopes, R.; Eça, L.; Vaz, G.; Kerkvliet, M. Assessing Numerical Aspects of Transitional Flow Simulations Using the RANS Equations. Int. J. Comput. Fluid Dyn. 2021, 1–22. [Google Scholar] [CrossRef]
- Malan, P.; Suluksna, K.; Juntasaro, E. Calibrating γ– Transition Model for Commercial CFD. In Proceedings of the 47th AIAA Aerospace Sciences Metting, Orlando, FL, USA, 5–8 January 2009. [Google Scholar]
- Spalart, P.R.; Allmaras, S.R. A one-equation turbulent model for aerodynamic flows. Rech. Aérosp. 1994, 1, 5–21. [Google Scholar]
- Spalart, P.R.; Garbaruk, A.V. Correction to the Spalart–Allmaras Turbulence Model, Providing More Accurate Skin Friction. AIAA J. 2020, 58, 1903–1905. [Google Scholar] [CrossRef]
- Ilinca, F.; Pelletier, D. Positivity preservation and adaptive solution of two-equation models of turbulence. Int. J. Therm. Sci. 1999, 38, 560–571. [Google Scholar] [CrossRef]
- Cakmakcioglu, S.C.; Bas, O.; Kaynak, U. A correlation-based algebraic transition model. Proc. Inst. Mech. Eng. Part C 2018, 232, 3915–3929. [Google Scholar] [CrossRef]
- Weller, H.; Tabor, G.; Jasak, H.; Fureby, C. A tensorial approach to computational continuum mechanics using object–oriented techniques. Comput. Phys. 1998, 12, 620–631. [Google Scholar] [CrossRef]
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow; Series in Computational Methods in Mechanics and Thermal Sciences; Hemisphere Publishing Corporation: Washington, DC, USA, 1980. [Google Scholar]
- Ferziger, J.; Peric, M. Computational Methods for Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Catalano, P.; Tognaccini, R. RANS analysis of the low-Reynolds number flow around the SD7003 airfoil. Aerosp. Sci. Technol. 2011, 15, 615–626. [Google Scholar] [CrossRef]
- Catalano, P.; Tognaccini, R. Influence of Free-Stream Turbulence on Simulations of Laminar Separation Bubbles. In Proceedings of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 5–8 January 2009. [Google Scholar]
- Selig, M.S.; Donovan, J.F.; Fraser, D.B. Airfoils at Low Speeds; Technical Report; Stokely, H.A., Ed.; Soartech Publications: Virginia Beach, VA, USA, 1989. [Google Scholar]
- Selig, M.S.; Donovan, J.F.; Fraser, D.B. Summary of Low-Speed Airfoil Data; Technical Report; Stokely, H.A., Ed.; Soartech Aero Publications: Virginia Beach, VA, USA, 1995. [Google Scholar]
- Ol, M.; McCauliffe, B.; Hanff, E.; Scholz, U.; Kaeer, C. Comparison of Laminar Separation Bubble Measurements on a Low Reynolds Number Airfoil in Three Facilities. In Proceedings of the 35th AIAA Fluid Dynamics Conference and Exhibit, Toronto, ON, Canada, 6–9 June 2005. [Google Scholar]
- Somers, D.M. Design and Experimental Results for the S809 Airfoil; National Renewable Energy Lab.: Golden, CO, USA, 1997. [Google Scholar]
- Wolfe, W.P.; Ochs, S.S. CFD calculations of S809 aerodynamic characteristics. In Proceedings of the 35th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1997. [Google Scholar]
- Zhang, S.; Yuan, X.; Ye, D. Analysis of Turbulent Separated Flows for the NREL Airfoil Using Anisotropic Two-Equation Models at Higher Angles of Attack. Wind Eng. 2001, 25, 41–53. [Google Scholar]
- Le Pape, A.; Lecanu, J. 3D Navier–Stokes computations of a stall-regulated wind turbine. Wind Energy 2004, 7, 309–324. [Google Scholar] [CrossRef]
- Bertagnolio, F.; Sorensen, N.; Johansen, J.; Fuglsang, P. Wind Turbine Airfoil Catalogue; Forskningscenter Risoe: Roskilde, Denmark, 2001. [Google Scholar]
- Xu, H.Y.; Xing, S.L.; Ye, Z.Y. Numerical study of the S809 airfoil aerodynamic performance using a co-flow jet active control concept. J. Renew. Sustain. Energy 2015, 7, 023131. [Google Scholar] [CrossRef]
- McGhee, R.; Walker, B.; Millard, B. Experimental Results for Eppler 387 Airfoil at low Re numbers in Langley Low Turbulence pressure tunnel. In Technical Report TM 4062; National Aeronautics and Space Administration, Scientific and Technical Information Division (NASA): Washington, DC, USA, 1988. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Alessandro, V.; Montelpare, S.; Ricci, R. Assessment of a Spalart–Allmaras Model Coupled with Local Correlation Based Transition Approaches for Wind Turbine Airfoils. Appl. Sci. 2021, 11, 1872. https://doi.org/10.3390/app11041872
D’Alessandro V, Montelpare S, Ricci R. Assessment of a Spalart–Allmaras Model Coupled with Local Correlation Based Transition Approaches for Wind Turbine Airfoils. Applied Sciences. 2021; 11(4):1872. https://doi.org/10.3390/app11041872
Chicago/Turabian StyleD’Alessandro, Valerio, Sergio Montelpare, and Renato Ricci. 2021. "Assessment of a Spalart–Allmaras Model Coupled with Local Correlation Based Transition Approaches for Wind Turbine Airfoils" Applied Sciences 11, no. 4: 1872. https://doi.org/10.3390/app11041872
APA StyleD’Alessandro, V., Montelpare, S., & Ricci, R. (2021). Assessment of a Spalart–Allmaras Model Coupled with Local Correlation Based Transition Approaches for Wind Turbine Airfoils. Applied Sciences, 11(4), 1872. https://doi.org/10.3390/app11041872