In Silico Validation of MCID Platform for Monte Carlo-Based Voxel Dosimetry Applied to 90Y-Radioembolization of Liver Malignancies
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Workflow
2.1.1. Phantoms Creation
2.1.2. SPECT Simulation
2.1.3. Map of Attenuation and Reconstruction
2.1.4. Input File Elaboration for GATE and Simulation
2.1.5. Conversion of the Output GATE File in Absorbed Dose Images with Requested Units
2.2. Simulated Cases
2.2.1. Uniform Liver (UL) Case
2.2.2. Spherical Regions (SR) Case
2.2.3. Nonuniform Liver (NUL) Case
- NUL-a, presenting a liver with homogeneous density and activity placed inside both spherical regions and liver with activity concentration ratio of 5:1, respectively;
- NUL-b, presenting a liver with nonhomogeneous density and activity placed inside the spherical regions (possible tumor lesions) and liver with activity concentration ratio of 5:1, respectively (Figure 3). For this scenario, four tissues were added to the segmentation list in Table 3: tumor (1.200 g/cm3), water (0.998 g/cm3), liver (1.050 g/cm3), and trabecular bone (1.140 g/cm3). The spheres were segmented in MCID as tumor, with different density as compared to the surrounding liver. The left prosthesis for this subcase was segmented as water.
2.3. Convolution with Voxel S-Values Calculated Independently
2.4. Statistical Uncertainty on the GATE Simulation
3. Results
3.1. UL Case
3.2. SR Case
3.3. NUL Case
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dezarn, W.A.; Cessna, J.T.; DeWerd, L.A.; Feng, W.; Gates, V.L.; Halama, J.; Kennedy, A.S.; Nag, S.; Sarfaraz, M.; Sehgal, V. Recommendations of the American Association of Physicists in Medicine on Dosimetry, Imaging, and Quality Assurance Procedures for 90Y Microsphere Brachytherapy in the Treatment of Hepatic Malignancies. Med. Phys. 2011, 38, 4824–4845. [Google Scholar] [CrossRef]
- Giammarile, F.; Bodei, L.; Chiesa, C.; Flux, G.; Forrer, F.; Kraeber-Bodere, F.; Brans, B.; Lambert, B.; Konijnenberg, M.; Borson-Chazot, F. EANM Procedure Guideline for the Treatment of Liver Cancer and Liver Metastases with Intra-Arterial Radioactive Compounds. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 1393. [Google Scholar] [CrossRef] [PubMed]
- Strigari, L.; Konijnenberg, M.; Chiesa, C.; Bardies, M.; Du, Y.; Gleisner, K.S.; Lassmann, M.; Flux, G. The Evidence Base for the Use of Internal Dosimetry in the Clinical Practice of Molecular Radiotherapy. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1976–1988. [Google Scholar] [CrossRef] [PubMed]
- Hermann, A.-L.; Dieudonné, A.; Ronot, M.; Sanchez, M.; Pereira, H.; Chatellier, G.; Garin, E.; Castera, L.; Lebtahi, R.; Vilgrain, V. Relationship of Tumor Radiation–Absorbed Dose to Survival and Response in Hepatocellular Carcinoma Treated with Transarterial Radioembolization with 90Y in the SARAH Study. Radiology 2020, 296, 673–684. [Google Scholar] [CrossRef]
- Levillain, H.; Derijckere, I.D.; Ameye, L.; Guiot, T.; Braat, A.; Meyer, C.; Vanderlinden, B.; Reynaert, N.; Hendlisz, A.; Lam, M. Personalised Radioembolization Improves Outcomes in Refractory Intra-Hepatic Cholangiocarcinoma: A Multicenter Study. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2270–2279. [Google Scholar] [CrossRef]
- Garin, E.; Palard, X.; Rolland, Y. Personalised Dosimetry in Radioembolisation for HCC: Impact on Clinical Outcome and on Trial Design. Cancers 2020, 12, 1557. [Google Scholar] [CrossRef]
- Palard, X.; Edeline, J.; Rolland, Y.; Le Sourd, S.; Pracht, M.; Laffont, S.; Lenoir, L.; Boudjema, K.; Ugen, T.; Brun, V. Dosimetric Parameters Predicting Contralateral Liver Hypertrophy after Unilobar Radioembolization of Hepatocellular Carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 392–401. [Google Scholar] [CrossRef] [Green Version]
- Van den Hoven, A.F.; Rosenbaum, C.E.; Elias, S.G.; de Jong, H.W.; Koopman, M.; Verkooijen, H.M.; Alavi, A.; van den Bosch, M.A.; Lam, M.G. Insights into the Dose–Response Relationship of Radioembolization with Resin 90Y-Microspheres: A Prospective Cohort Study in Patients with Colorectal Cancer Liver Metastases. J. Nucl. Med. 2016, 57, 1014–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiesa, C.; Mira, M.; Bhoori, S.; Bormolini, G.; Maccauro, M.; Spreafico, C.; Cascella, T.; Cavallo, A.; De Nile, M.C.; Mazzaglia, S. Radioembolization of Hepatocarcinoma with 90 Y Glass Microspheres: Treatment Optimization Using the Dose-Toxicity Relationship. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 3018–3032. [Google Scholar] [CrossRef] [PubMed]
- Willowson, K.P.; Bernard, E.J.; Maher, R.; Clarke, S.J.; Bailey, D.L. Changing Therapeutic Paradigms: Predicting MCRC Lesion Response to Selective Internal Radionuclide Therapy (SIRT) Based on Critical Absorbed Dose Thresholds: A Case Study. Asia Ocean. J. Nucl. Med. Biol. 2017, 5, 66. [Google Scholar]
- Gulec, S.A.; Mesoloras, G.; Stabin, M. Dosimetric Techniques in 90Y-Microsphere Therapy of Liver Cancer: The MIRD Equations for Dose Calculations. J. Nucl. Med. 2006, 47, 1209–1211. [Google Scholar]
- Ho, S.; Lau, W.Y.; Leung, T.W.T.; Chan, M.; Ngar, Y.K.; Johnson, P.J.; Li, A.K.C. Partition Model for Estimating Radiation Doses from Yttrium-90 Microspheres in Treating Hepatic Tumours. Eur. J. Nucl. Med. 1996, 23, 947–952. [Google Scholar] [CrossRef]
- Flamen, P.; Vanderlinden, B.; Delatte, P.; Ghanem, G.; Ameye, L.; Van Den Eynde, M.; Hendlisz, A. Multimodality Imaging Can Predict the Metabolic Response of Unresectable Colorectal Liver Metastases to Radioembolization Therapy with Yttrium-90 Labeled Resin Microspheres. Phys. Med. Biol. 2008, 53, 6591. [Google Scholar] [CrossRef] [PubMed]
- Ljungberg, M.; Sjögreen-Gleisner, K. The Accuracy of Absorbed Dose Estimates in Tumours Determined by Quantitative SPECT: A Monte Carlo Study. Acta Oncol. 2011, 50, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Pasciak, A.S.; Bourgeois, A.C.; Bradley, Y.C. A Comparison of Techniques for 90Y PET/CT Image-Based Dosimetry Following Radioembolization with Resin Microspheres. Front. Oncol. 2014, 4, 121. [Google Scholar] [CrossRef] [Green Version]
- Bolch, W.E.; Bouchet, L.G.; Robertson, J.S.; Wessels, B.W.; Siegel, J.A.; Howell, R.W.; Erdi, A.K.; Aydogan, B.; Costes, S.; Watson, E.E. MIRD Pamphlet No. 17: The Dosimetry of Nonuniform Activity Distributions—Radionuclide S Values at the Voxel Level. J. Nucl. Med. 1999, 40, 11S–36S. [Google Scholar] [PubMed]
- Lanconelli, N.; Pacilio, M.; Meo, S.L.; Botta, F.; Di Dia, A.; Aroche, L.T.; Pérez, M.C.; Cremonesi, M. A Free Database of Radionuclide Voxel S Values for the Dosimetry of Nonuniform Activity Distributions. Phys. Med. Biol. 2012, 57, 517. [Google Scholar] [CrossRef]
- Pacilio, M.; Amato, E.; Lanconelli, N.; Basile, C.; Torres, L.A.; Botta, F.; Ferrari, M.; Diaz, N.C.; Perez, M.C.; Fernández, M.; et al. Differences in 3D Dose Distributions Due to Calculation Method of Voxel S-Values and the Influence of Image Blurring in SPECT. Phys. Med. Biol. 2015, 60, 1945. [Google Scholar] [CrossRef] [PubMed]
- Dieudonné, A.; Garin, E.; Laffont, S.; Rolland, Y.; Lebtahi, R.; Leguludec, D.; Gardin, I. Clinical Feasibility of Fast 3-Dimensional Dosimetry of the Liver for Treatment Planning of Hepatocellular Carcinoma with 90Y-Microspheres. J. Nucl. Med. 2011, 52, 1930–1937. [Google Scholar] [CrossRef] [Green Version]
- Sgouros, G.; Kolbert, K.S. The three-dimensional internal dosimetry software package, 3D-ID. In Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine; CRC Press: Boca Raton, FL, USA, 2002; pp. 249–261. [Google Scholar]
- Petitguillaume, A.; Bernardini, M.; De Labriolle-Vaylet, C.; Franck, D.; Desbrée, A. 3D-Personalized Monte Carlo Dosimetry for Treatment Planning Optimization in SIRT. J. Nucl. Med. 2014, 55, 51. [Google Scholar]
- Bastiaannet, R.; Kappadath, S.C.; Kunnen, B.; Braat, A.J.; Lam, M.G.; de Jong, H.W. The Physics of Radioembolization. EJNMMI Phys. 2018, 5, 1–27. [Google Scholar] [CrossRef]
- Kim, S.P.; Cohalan, C.; Kopek, N.; Enger, S.A. A Guide to 90Y Radioembolization and Its Dosimetry. Phys. Med. 2019, 68, 132–145. [Google Scholar] [CrossRef]
- Gardin, I.; Bouchet, L.G.; Assié, K.; Caron, J.; Lisbona, A.; Ferrer, L.; Bolch, W.E.; Vera, P. Voxeldose: A Computer Program for 3-D Dose Calculation in Therapeutic Nuclear Medicine. Cancer Biother. Radiopharm. 2003, 18, 109–115. [Google Scholar] [CrossRef]
- Auditore, L.; Amato, E.; Italiano, A.; Arce, P.; Campennì, A.; Baldari, S. Internal Dosimetry for TARE Therapies by Means of GAMOS Monte Carlo Simulations. Phys. Med. 2019, 64, 245–251. [Google Scholar] [CrossRef]
- Chiavassa, S.; Aubineau-Lanièce, I.; Bitar, A.; Lisbona, A.; Barbet, J.; Franck, D.; Jourdain, J.R.; Bardiès, M. Validation of a Personalized Dosimetric Evaluation Tool (Oedipe) for Targeted Radiotherapy Based on the Monte Carlo MCNPX Code. Phys. Med. Biol. 2006, 51, 601. [Google Scholar] [CrossRef]
- Botta, F.; Mairani, A.; Hobbs, R.F.; Gil, A.V.; Pacilio, M.; Parodi, K.; Cremonesi, M.; Pérez, M.C.; Di Dia, A.; Ferrari, M. Use of the FLUKA Monte Carlo Code for 3D Patient-Specific Dosimetry on PET-CT and SPECT-CT Images. Phys. Med. Biol. 2013, 58, 8099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prideaux, A.R.; Song, H.; Hobbs, R.F.; He, B.; Frey, E.C.; Ladenson, P.W.; Wahl, R.L.; Sgouros, G. Three-Dimensional Radiobiologic Dosimetry: Application of Radiobiologic Modeling to Patient-Specific 3-Dimensional Imaging–Based Internal Dosimetry. J. Nucl. Med. 2007, 48, 1008–1016. [Google Scholar] [CrossRef] [Green Version]
- Marcatili, S.; Pettinato, C.; Daniels, S.; Lewis, G.; Edwards, P.; Fanti, S.; Spezi, E. Development and Validation of RAYDOSE: A Geant4-Based Application for Molecular Radiotherapy. Phys. Med. Biol. 2013, 58, 2491. [Google Scholar] [CrossRef] [PubMed]
- Gil, A.V.; Pérez, M.C.; Aroche, L.T.; Pacilio, M.; Botta, F.; Cremonesi, M. MCID: A Personalized Dosimetric Tool Associating Voxel-Based Models with MCNP5. In Proceedings of the IAEA International Conference on Radiation Protection in Medicine, Setting the Scene for the Next Decade, Bonn, Germany, 3–7 December 2012; pp. 3–7. [Google Scholar]
- Gil, A.V.; Perez, M.A.; Aroche, L.A.T.; Pacilio, M. MCID: Personalized Dosimetric Tool to Simulate; MCID: Herramienta Dosimetrica Personalizada Para Simular. In Proceedings of the 9 Regional Congress of IRPA on Radiological and Nuclear Safety, Rio de Janeiro, Brazil, 14–19 April 2013. [Google Scholar]
- Jan, S.; Santin, G.; Strul, D.; Staelens, S.; Assie, K.; Autret, D.; Avner, S.; Barbier, R.; Bardies, M.; Bloomfield, P.M. GATE: A Simulation Toolkit for PET and SPECT. Phys. Med. Biol. 2004, 49, 4543. [Google Scholar] [CrossRef] [PubMed]
- OpenGATE Collaboration: Users Guide V8.0. 2017. Available online: http://www.opengatecollaboration.org/sites/default/files/GATE-UsersGuideV8.0.pdf (accessed on 8 November 2020).
- Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability. Neuroimage 2006, 31, 1116–1128. [Google Scholar] [CrossRef] [Green Version]
- Ljungberg, M.; Strand, S.; King, M.A. The SIMIND Monte Carlo Program. In Monte Carlo Calculations in Nuclear Medicine; CRC Press: Boca Raton, FL, USA, 2012; pp. 145–163. [Google Scholar]
- Frey, E.C.; Tsui, B.M.W. A New Method for Modeling the Spatially-Variant, Object-Dependent Scatter Response Function in SPECT. In Proceedings of the 1996 IEEE Nuclear Science Symposium. Conference Record, Anaheim, CA, USA, 2–9 November 1996; Volume 2, pp. 1082–1086. [Google Scholar]
- Eckerman, K.F.; Westfall, R.J.; Ryman, J.C.; Cristy, M. Availability of Nuclear Decay Data in Electronic Form, Including Beta Spectra Not Previously Published. Health Phys. 1994, 67, 338–345. [Google Scholar] [CrossRef] [PubMed]
- White, D.R.; Booz, J.; Griffith, R.V.; Spokas, J.J.; Wilson, I.J. ICRU Report 44: Tissue Substitutes in Radiation Dosimetry and Measurement. Int. Comm. Radiat. Units Meas. 1989, os23, NP. [Google Scholar] [CrossRef]
- Stabin, M.G.; Sparks, R.B.; Crowe, E. OLINDA/EXM: The Second-Generation Personal Computer Software for Internal Dose Assessment in Nuclear Medicine. J. Nucl. Med. 2005, 46, 1023–1027. [Google Scholar]
- Chetty, I.J.; Rosu, M.; Kessler, M.L.; Fraass, B.A.; Ten Haken, R.K.; McShan, D.L. Reporting and Analyzing Statistical Uncertainties in Monte Carlo–Based Treatment Planning. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 1249–1259. [Google Scholar] [CrossRef] [PubMed]
- Kost, S.D.; Dewaraja, Y.K.; Abramson, R.G.; Stabin, M.G. VIDA: A Voxel-Based Dosimetry Method for Targeted Radionuclide Therapy Using Geant4. Cancer Biother. Radiopharm. 2015, 30, 16–26. [Google Scholar] [CrossRef] [Green Version]
- D’Arienzo, M.; Sarnelli, A.; Mezzenga, E.; Chiacchiararelli, L.; Amato, A.; Romanelli, M.; Cianni, R.; Cremonesi, M.; Paganelli, G. Dosimetric Issues Associated with Percutaneous Ablation of Small Liver Lesions with 90Y. Appl. Sci. 2020, 10, 6605. [Google Scholar] [CrossRef]
- Tran-Gia, J.; Salas-Ramirez, M.; Lassmann, M. What You See Is Not What You Get: On the Accuracy of Voxel-Based Dosimetry in Molecular Radiotherapy. J. Nucl. Med. 2020, 61, 1178–1186. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Crystal material | NaI |
Crystal length | 39 cm |
Crystal thickness | 0.9530 cm |
Crystal width | 53 cm |
Energy resolution (at 140 keV) | 9.7% |
Intrinsic spatial resolution (at 140 keV) | 0.32 cm |
Final matrix dimension | 128 × 128 × 120 |
Pixel size in the final image | 0.41 cm |
Photons’ histories per projection angle | 108 |
Collimator type | Hexagonal parallel holes |
File Name | Function/Set Parameters |
---|---|
_Y90_spectrum.mac | Recalls all the files, # of primaries |
actor.mac | Types of output * |
geometry.mac | Geometry and density (CT) |
physic.mac | Physics list (emstandard_opt3 **) |
sourceY90.mac | Source type (SPECT) |
Tissue/Material | Density (g/cm3) |
---|---|
Air | 1.205∙10−3 |
Adipose tissue | 0.920 |
Compact bone | 1.850 |
Lung | 0.296 |
Soft tissue | 1.040 |
Dgate (Gy) | Dmird (Gy) | RD (%) |
---|---|---|
36.79 | 36.69 | 0.27 |
Dgate (Gy) | Dolinda (Gy) | RD (%) | |
---|---|---|---|
BS | 666 | 625 | 6.57 |
MS | 558 | 604 | −7.62 |
SS | 176 | 571 | −69.20 |
Dgate (Gy) | Dolinda (Gy) | RD (%) | |
---|---|---|---|
BS | 613 | 625 | −1.92 |
MS | 588 | 604 | −2.65 |
SS | 517 | 571 | −9.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milano, A.; Gil, A.V.; Fabrizi, E.; Cremonesi, M.; Veronese, I.; Gallo, S.; Lanconelli, N.; Faccini, R.; Pacilio, M. In Silico Validation of MCID Platform for Monte Carlo-Based Voxel Dosimetry Applied to 90Y-Radioembolization of Liver Malignancies. Appl. Sci. 2021, 11, 1939. https://doi.org/10.3390/app11041939
Milano A, Gil AV, Fabrizi E, Cremonesi M, Veronese I, Gallo S, Lanconelli N, Faccini R, Pacilio M. In Silico Validation of MCID Platform for Monte Carlo-Based Voxel Dosimetry Applied to 90Y-Radioembolization of Liver Malignancies. Applied Sciences. 2021; 11(4):1939. https://doi.org/10.3390/app11041939
Chicago/Turabian StyleMilano, Alessia, Alex Vergara Gil, Enrico Fabrizi, Marta Cremonesi, Ivan Veronese, Salvatore Gallo, Nico Lanconelli, Riccardo Faccini, and Massimiliano Pacilio. 2021. "In Silico Validation of MCID Platform for Monte Carlo-Based Voxel Dosimetry Applied to 90Y-Radioembolization of Liver Malignancies" Applied Sciences 11, no. 4: 1939. https://doi.org/10.3390/app11041939
APA StyleMilano, A., Gil, A. V., Fabrizi, E., Cremonesi, M., Veronese, I., Gallo, S., Lanconelli, N., Faccini, R., & Pacilio, M. (2021). In Silico Validation of MCID Platform for Monte Carlo-Based Voxel Dosimetry Applied to 90Y-Radioembolization of Liver Malignancies. Applied Sciences, 11(4), 1939. https://doi.org/10.3390/app11041939