Region-of-Interest-Based Cardiac Image Segmentation with Deep Learning
Abstract
:1. Introduction
2. Related Work
3. Datasets
3.1. ACDC Dataset
3.2. imATFIB Dataset
4. Method
4.1. Architectures
4.2. Data Preprocessing
4.3. ROI Localization
4.3.1. Perfect ROI
4.3.2. ROI Extraction Mechanism
4.3.3. Standard Model Training
4.3.4. ROI Model Training
4.3.5. Ensembling
5. Experiments and Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.; Qin, C.; Qiu, H.; Tarroni, G.; Duan, J.; Bai, W.; Rueckert, D. Deep Learning for Cardiac Image Segmentation: A Review. Front. Cardiovasc. Med. 2020, 7, 25. [Google Scholar] [CrossRef]
- Alom, M.Z.; Yakopcic, C.; Hasan, M.; Taha, T.M.; Asari, V.K. Recurrent residual U-Net for medical image segmentation. J. Med. Imaging 2019, 6, 014006. [Google Scholar] [CrossRef]
- Zhuang, X.; Li, L.; Payer, C.; Štern, D.; Urschler, M.; Heinrich, M.P.; Oster, J.; Wang, C.; Smedby, O.; Bian, C.; et al. Evaluation of algorithms for Multi-Modality Whole Heart Segmentation: An open-access grand challenge. Med. Image Anal. 2019, 58, 101537. [Google Scholar] [CrossRef]
- Bernard, O.; Lalande, A.; Zotti, C.; Cervenansky, F.; Yang, X.; Heng, P.A.; Cetin, I.; Lekadir, K.; Camara, O.; González Ballester, M.A.; et al. Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? IEEE Trans. Med. Imaging 2018, 1. [Google Scholar] [CrossRef]
- Trullo, R.; Petitjean, C.; Dubray, B.; Ruan, S. Multiorgan segmentation using distance-aware adversarial networks. J. Med. Imaging 2019, 6, 014001. [Google Scholar] [CrossRef] [PubMed]
- Tajbakhsh, N.; Jeyaseelan, L.; Li, Q.; Chiang, J.N.; Wu, Z.; Ding, X. Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation. Med. Image Anal. 2020, 63, 101693. [Google Scholar] [CrossRef] [Green Version]
- Mărginean, R.; Andreica, A.; Dioşan, L.; Bálint, Z. Feasibility of Automatic Seed Generation Applied to Cardiac MRI Image Analysis. Mathematics 2020, 8, 1511. [Google Scholar] [CrossRef]
- Militello, C.; Rundo, L.; Toia, P.; Conti, V.; Russo, G.; Filorizzo, C.; Maffei, E.; Cademartiri, F.; La Grutta, L.; Midiri, M.; et al. A semi-automatic approach for epicardial adipose tissue segmentation and quantification on cardiac CT scans. Comput. Biol. Med. 2019, 114, 103424. [Google Scholar] [CrossRef]
- Commandeur, F.; Goeller, M.; Razipour, A.; Cadet, S.; Hell, M.M.; Kwiecinski, J.; Chen, X.; Chang, H.J.; Marwan, M.; Achenbach, S.; et al. Fully automated CT quantification of epicardial adipose tissue by deep learning: A multicenter study. Radiol. Artif. Intell. 2019, 1, e190045. [Google Scholar] [CrossRef]
- Baumgartner, C.F.; Koch, L.M.; Pollefeys, M.; Konukoglu, E. An Exploration of 2D and 3D Deep Learning Techniques for Cardiac MR Image Segmentation. In International Workshop on Statistical Atlases and Computational Models of the Heart; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Liu, L.; Cheng, J.; Quan, Q.; Wu, F.X.; Wang, Y.P.; Wang, J. A survey on U-shaped networks in medical image segmentations. Neurocomputing 2020, 409, 244–258. [Google Scholar] [CrossRef]
- Schlemper, J.; Oktay, O.; Schaap, M.; Heinrich, M.; Kainz, B.; Glocker, B.; Rueckert, D. Attention gated networks: Learning to leverage salient regions in medical images. Med. Image Anal. 2019, 53, 197–207. [Google Scholar] [CrossRef]
- Rundo, L.; Han, C.; Nagano, Y.; Zhang, J.; Hataya, R.; Militello, C.; Tangherloni, A.; Nobile, M.S.; Ferretti, C.; Besozzi, D.; et al. USE-Net: Incorporating Squeeze-and-Excitation blocks into U-Net for prostate zonal segmentation of multi-institutional MRI datasets. Neurocomputing 2019, 365, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Isensee, F.; Jaeger, P.F.; Kohl, S.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 2021, 18, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Kavalcova, L.; Skaba, R.; Kyncl, M.; Rouskova, B.; Prochazka, A. The diagnostic value of MRI fistulogram and MRI distal colostogram in patients with anorectal malformations. J. Pediatr. Surg. 2013, 48, 1806–1809. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [Green Version]
- Altaf, F.; Islam, S.M.; Akhtar, N.; Janjua, N.K. Going deep in medical image analysis: Concepts, methods, challenges, and future directions. IEEE Access 2019, 7, 99540–99572. [Google Scholar] [CrossRef]
- Fourcade, A.; Khonsari, R. Deep learning in medical image analysis: A third eye for doctors. J. Stomatol. Oral Maxillofac. Surg. 2019, 120, 279–288. [Google Scholar] [CrossRef]
- Aldoj, N.; Biavati, F.; Michallek, F.; Stober, S.; Dewey, M. Automatic prostate and prostate zones segmentation of magnetic resonance images using DenseNet-like U-Net. Sci. Rep. 2020, 10, 1–17. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Payer, C.; Stern, D.; Bischof, H.; Urschler, M. Multi-label Whole Heart Segmentation Using CNNs and Anatomical Label Configurations. Statistical Atlases and Computational Models of the Heart. In Proceedings of the ACDC and MMWHS Challenges—8th International Workshop, STACOM 2017 (Held in Conjunction with MICCAI 2017), Quebec City, QC, Canada, 10–14 September 2017; Lecture Notes in Computer Science. Pop, M., Sermesant, M., Jodoin, P., Lalande, A., Zhuang, X., Yang, G., Young, A.A., Bernard, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10663, pp. 190–198. [Google Scholar] [CrossRef]
- Rundo, L.; Tangherloni, A.; Cazzaniga, P.; Nobile, M.; Russo, G.; Gilardi, M.; Vitabile, S.; Mauri, G.; Besozzi, D.; Militello, C. A novel framework for MR image segmentation and quantification by using MedGA. Comput. Methods Programs Biomed. 2019, 176, 159–172. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.B.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv 2015, arXiv:1506.01497. [Google Scholar] [CrossRef] [Green Version]
- Zreik, M.; Leiner, T.; de Vos, B.D.; van Hamersvelt, R.W.; Viergever, M.A.; Išgum, I. Automatic segmentation of the left ventricle in cardiac CT angiography using convolutional neural networks. In Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April 2016; pp. 40–43. [Google Scholar]
- Nasr-Esfahani, M.; Mohrekesh, M.; Akbari, M.; Soroushmehr, S.M.R.; Nasr-Esfahani, E.; Karimi, N.; Samavi, S.; Najarian, K. Left Ventricle Segmentation in Cardiac MR Images Using Fully Convolutional Network. arXiv 2018, arXiv:1802.07778. [Google Scholar]
- Constantinides, C.; Chenoune, Y.; Mousseaux, E.; Roullot, E.; Frouin, F. Automated heart localization for the segmentation of the ventricular cavities on cine magnetic resonance images. In Proceedings of the 2010 Computing in Cardiology, Belfast, UK, 26–29 September 2010; pp. 911–914. [Google Scholar]
- Wang, C.; MacGillivray, T.; Macnaught, G.; Yang, G.; Newby, D.E. A two-stage 3D Unet framework for multi-class segmentation on full resolution image. arXiv 2018, arXiv:1804.04341. [Google Scholar]
- Chen, L.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. arXiv 2018, arXiv:1802.02611. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Chen, L.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. arXiv 2016, arXiv:1606.00915. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2019, arXiv:1905.11946. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Isensee, F.; Jaeger, P.; Full, P.M.; Wolf, I.; Engelhardt, S.; Maier-Hein, K.H. Automatic Cardiac Disease Assessment on cine-MRI via Time-Series Segmentation and Domain Specific Features. arXiv 2017, arXiv:1707.00587. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization, 2014. In Proceedings of the 3rd International Conference for Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset for Semantic Urban Scene Understanding. arXiv 2016, arXiv:1604.01685. [Google Scholar]
Model | Dataset | Mean Dice | StDev | Min–Max |
---|---|---|---|---|
DeepLab | ACDC | 92.6 | 5.4 | 67.4–97.5 |
Unet | ACDC | 92.9 | 3.6 | 83.8–97.5 |
DeepLab | imATFIB | 89.7 | 1.0 | 88.4–90.8 |
Unet | imATFIB | 90 | 1.4 | 88.5–92.3 |
Model | Pretraining | Mean Dice | StDev | Min–Max |
---|---|---|---|---|
: DeepLab | No | 85.5 | 2.0 | 82.5–88.1 |
: DeepLab | Yes | 86.6 | 1.9 | 83.4–88.6 |
: Unet | No | 88.2 | 1.2 | 85.8–88.9 |
: Unet | Yes | 88.2 | 1.2 | 85.8–88.9 |
: Unet & Unet | - | 89.34 | 1.1 | 87.8–90.4 |
: Unet & DeepLab | - | 88.70 | 0.9 | 87.5–90.0 |
: Standard Ensemble | - | 89.25 | 0.8 | 87.9–90.2 |
: ROI Ensemble | - | 89.41 | 1.2 | 88.0–91.3 |
: All Ensemble | - | 89.89 | 0.9 | 88.8–91.2 |
Model | Dice RV | Dice LV | Dice Myo | Mean Dice | StDev | Min–Max |
---|---|---|---|---|---|---|
: DeepLab | 90.50 | 94.50 | 89.10 | 91.37 | 3.2 | 80.6–95.2 |
: Unet | 89.32 | 95.07 | 89.47 | 91.29 | 3.0 | 83.1–95.5 |
: DeepLab & DeepLab | 90.58 | 94.72 | 89.53 | 91.61 | 3.4 | 77.5–95.9 |
: DeepLab & Unet | 90.65 | 95.02 | 89.94 | 91.87 | 3.0 | 81.7–95.7 |
: Standard Ensemble ( and ) | 90.48 | 95.12 | 89.89 | 91.83 | 3.0 | 82.5–95.9 |
: ROI Ensemble ( and ) | 90.88 | 94.98 | 90.11 | 91.99 | 3.2 | 80.0–95.9 |
: All Ensemble ( and ) | 91.26 | 95.39 | 90.49 | 92.38 | 2.9 | 81.7–96.2 |
Model | Dice RV | Dice LV | Dice Myo | Mean Dice | StDev | Min–Max |
---|---|---|---|---|---|---|
: DeepLab | 90.50 | 94.50 | 89.10 | 91.37 | 3.2 | 80.6–95.2 |
: Unet | 89.32 | 95.07 | 89.47 | 91.29 | 3.0 | 83.1–95.5 |
: DeepLab & DeepLab | 90.58 | 94.72 | 89.53 | 91.61 | 3.4 | 77.5–95.9 |
: DeepLab & Unet | 90.65 | 95.02 | 89.94 | 91.87 | 3.0 | 81.7–95.7 |
: Standard Ensemble ( and ) | 90.48 | 95.12 | 89.89 | 91.83 | 3.0 | 82.5–95.9 |
: ROI Ensemble ( and ) | 90.88 | 94.98 | 90.11 | 91.99 | 3.2 | 80.0–95.9 |
: All Ensemble ( and ) | 91.26 | 95.39 | 90.49 | 92.38 | 2.9 | 81.7–96.2 |
Model | Hausdorff RV (mm) | Hausdorff LV (mm) | Hausdorff Myo (mm) |
---|---|---|---|
: DeepLab | 24.27 | 11.93 | 14.46 |
: All Ensemble | 13.21 | 10.99 | 12.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galea, R.-R.; Diosan, L.; Andreica, A.; Popa, L.; Manole, S.; Bálint, Z. Region-of-Interest-Based Cardiac Image Segmentation with Deep Learning. Appl. Sci. 2021, 11, 1965. https://doi.org/10.3390/app11041965
Galea R-R, Diosan L, Andreica A, Popa L, Manole S, Bálint Z. Region-of-Interest-Based Cardiac Image Segmentation with Deep Learning. Applied Sciences. 2021; 11(4):1965. https://doi.org/10.3390/app11041965
Chicago/Turabian StyleGalea, Raul-Ronald, Laura Diosan, Anca Andreica, Loredana Popa, Simona Manole, and Zoltán Bálint. 2021. "Region-of-Interest-Based Cardiac Image Segmentation with Deep Learning" Applied Sciences 11, no. 4: 1965. https://doi.org/10.3390/app11041965
APA StyleGalea, R. -R., Diosan, L., Andreica, A., Popa, L., Manole, S., & Bálint, Z. (2021). Region-of-Interest-Based Cardiac Image Segmentation with Deep Learning. Applied Sciences, 11(4), 1965. https://doi.org/10.3390/app11041965